Skip to main content

Anomaly Detection—Empirical Approach

  • Chapter
  • First Online:
Empirical Approach to Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 800))

Abstract

In this chapter, the empirical approach to the problem of anomaly detection is presented, which is free from the pre-defined model and user-and problem-specific parameters and is data driven. The well-known Chebyshev inequality has been simplified by using the standardized eccentricity. An autonomous anomaly detection method is proposed, which is composed of two stages. In the first stage, all the potential global anomalies are selected out based on the data density and/or on the typicality, and in the second stage, the local anomalies are identified based on the data clouds formed from the potential global anomalies. In addition, a fully autonomous approach for the problem of fault detection has been outlined, which can also be extended to a fully autonomous fault detection and isolation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), p. Article 15 (2009)

    Article  Google Scholar 

  2. M. Kirlidog, C. Asuk, A fraud detection approach with data mining in health insurance. Procedia-Social Behav. Sci. 62, 989–994 (2012)

    Article  Google Scholar 

  3. E.W.T. Ngai, Y. Hu, Y.H. Wong, Y. Chen, X. Sun, The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50(3), 559–569 (2011)

    Article  Google Scholar 

  4. E.C. Ngai, J. Liu, M.R. Lyu, On the intruder detection for sinkhole attack in wireless sensor networks, in IEEE International Conference on Communications, 2006, pp. 3383–3389

    Google Scholar 

  5. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, ‘Andromaly’: a behavioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012)

    Article  Google Scholar 

  6. R. Isermann, Model-based fault-detection and diagnosis–status and applications. Ann. Rev. Control 29(1), 71–85 (2005)

    Article  Google Scholar 

  7. L. Itti, P. Baldi, A principled approach to detecting surprising events in video, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 631–637

    Google Scholar 

  8. P. Angelov, Autonomous Learning Systems: From Data Streams to Knowledge in Real Time (Wiley, 2012)

    Google Scholar 

  9. P.P. Angelov, X. Gu, J.C. Principe, Autonomous learning multi-model systems from data streams. IEEE Trans. Fuzzy Syst. 26(4), 2213–2224 (2016)

    Article  Google Scholar 

  10. P.P. Angelov, Anomaly detection based on eccentricity analysis, in 2014 IEEE Symposium Series in Computational Intelligence, IEEE Symposium on Evolving and Autonomous Learning Systems, EALS, SSCI 2014, 2014, pp. 1–8

    Google Scholar 

  11. A.M. Tripathi, R.D. Baruah, Anomaly detection in data streams based on graph coloring density coefficients, in IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1–7

    Google Scholar 

  12. M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in Proceedings of the 2000 ACM Sigmod International Conference on Management of Data, 2000, pp. 1–12

    Google Scholar 

  13. N. Abe, B. Zadrozny, J. Langford, Outlier detection by active learning, in IACM International Conference on Knowledge Discovery and Data Mining, 2006, pp. 504–509

    Google Scholar 

  14. S.S. Sivatha Sindhu, S. Geetha, A. Kannan, Decision tree based light weight intrusion detection using a wrapper approach. Expert Syst. Appl. 39(1), 129–141 (2012)

    Article  Google Scholar 

  15. L.M. Manevitz, M. Yousef, One-class SVMs for document classification. J. Mach. Learn. Res. 2, 139–154 (2002)

    Google Scholar 

  16. R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in The Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–411

    Google Scholar 

  17. D. Dasgupta, F. Nino, A comparison of negative and positive selection algorithms in novel pattern detection, in IEEE International Conference on Systems, Man, and Cybernetics, 2000, pp. 125–130

    Google Scholar 

  18. V. Hautam, K. Ismo, Outlier detection using k-nearest neighbour graph, in International Conference on Pattern Recognition, 2004, pp. 430–433

    Google Scholar 

  19. H. Moonesinghe, P. Tan, Outlier detection using random walks, in Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), 2006, pp. 532–539

    Google Scholar 

  20. M. Salehi, C. Leckie, J.C. Bezdek, T. Vaithianathan, X. Zhang, Fast memory efficient local outlier detection in data streams. IEEE Trans. Knowl. Data Eng. 28(12), 3246–3260 (2016)

    Article  Google Scholar 

  21. J.G. Saw, M.C.K. Yang, T.S.E.C. Mo, Chebyshev inequality with estimated mean and variance. Am. Stat. 38(2), 130–132 (1984)

    MathSciNet  Google Scholar 

  22. P. Angelov, Anomalous system state identification, US9390265 B2, 2016

    Google Scholar 

  23. M. Goldstein, M. Goldstein, S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One 1–31 (2016)

    Google Scholar 

  24. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)

    MATH  Google Scholar 

  25. A. Bernieri, G. Betta, C. Liguori, On-line fault detection and diagnosis obtained by implementing neural algorithms on a digital signal processor. IEEE Trans. Instrum. Measur. 45(5), 894–899 (1996)

    Article  Google Scholar 

  26. http://www.worldweatheronline.com

  27. P.P. Angelov, D.P. Filev, An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 34(1), 484–498 (2004)

    Article  Google Scholar 

  28. R. Ramezani, P. Angelov, X. Zhou, A fast approach to novelty detection in video streams using recursive density estimation, in International IEEE Conference Intelligent Systems, 2008, pp. 14-2–14-7

    Google Scholar 

  29. P. Angelov, Machine learning (collaborative systems), 8250004, 2006

    Google Scholar 

  30. X. Gu, P. Angelov, Autonomous anomaly detection, in IEEE Conference on Evolving and Adaptive Intelligent Systems, 2017, pp. 1–8

    Google Scholar 

  31. P. Angelov, X. Gu, D. Kangin, Empirical data analytics. Int. J. Intell. Syst. 32(12), 1261–1284 (2017)

    Article  Google Scholar 

  32. P.P. Angelov, X. Gu, J. Principe, A generalized methodology for data analysis. IEEE Trans. Cybern. 48(10), 2981–2993 (2018).

    Article  Google Scholar 

  33. A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. (Wiley, Chichester, England, 1999)

    MATH  Google Scholar 

  34. W. Pedrycz, Granular Computing: Analysis and Design of Intelligent Systems (CRC Press, 2013)

    Google Scholar 

  35. X. Gu, P.P. Angelov, Self-organising fuzzy logic classifier. Inf. Sci. (Ny) 447, 36–51 (2018)

    Article  Google Scholar 

  36. D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13(2), 222–232 (1987)

    Article  Google Scholar 

  37. C. Thomas, N. Balakrishnan, Improvement in intrusion detection with advances in sensor fusion. IEEE Trans. Inf. Forensics Secur. 4(3), 542–551 (2009)

    Article  Google Scholar 

  38. R. Isermann, Supervision, fault-detection and fault-diagnosis methods-an introduction. Control Eng. Pract. 5(5), 639–652 (1997)

    Article  Google Scholar 

  39. C.G. Bezerra, B.S.J. Costa, L.A. Guedes, P.P. Angelov, An evolving approach to unsupervised and real-time fault detection in industrial processes. Expert Syst. Appl. 63, 134–144 (2016)

    Article  Google Scholar 

  40. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  41. R.E. Precup, P. Angelov, B.S.J. Costa, M. Sayed-Mouchaweh, An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 74, 1–16 (2015)

    Article  Google Scholar 

  42. S. Mahadevan, S.L. Shah, Fault detection and diagnosis in process data using one-class support vector machines. J. Process Control 19(10), 1627–1639 (2009)

    Article  Google Scholar 

  43. P. Konar, P. Chattopadhyay, Bearing fault detection of induction motor using wavelet and support vector machines (SVMs). Appl. Soft Comput. 11(6), 4203–4211 (2011)

    Article  Google Scholar 

  44. P.K. Wong, Z. Yang, C.M. Vong, J. Zhong, Real-time fault diagnosis for gas turbine generator systems using extreme learning machine. Neurocomputing 128, 249–257 (2014)

    Article  Google Scholar 

  45. J. Hu, K. Dong, Detection and repair faults of sensors in sampled control system, in IEEE International Conference on Fuzzy Systems and Knowledge Discovery, 2015, pp. 2343–2347

    Google Scholar 

  46. H. Ma, Y. Hu, H. Shi, Fault detection and identification based on the neighborhood standardized local outlier factor method. Ind. Eng. Chem. Res. 52(6), 2389–2402 (2013)

    Article  Google Scholar 

  47. Z. Yan, C.Y. Chen, Y. Yao, C.C. Huang, Robust multivariate statistical process monitoring via stable principal component pursuit. Ind. Eng. Chem. Res. 55(14), 4011–4021 (2016)

    Article  Google Scholar 

  48. V. Chandola, A. Banerjee, V. Kumar, Outlier detection: a survey. ACM Comput. Surv (2017)

    Google Scholar 

  49. V. Hodge, J. Austin, A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  50. S.P. King, D.M. King, K. Astley, L. Tarassenko, P. Hayton, S. Utete, The use of novelty detection techniques for monitoring high-integrity plant, in IEEE International Conference on Control Applications, 2002, pp. 221–226

    Google Scholar 

  51. Y. Li, M.J. Pont, N.B. Jones, Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where ‘unknown’ faults may occur. Pattern Recognit. Lett. 23, 569–577 (2002)

    Article  Google Scholar 

  52. R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–410

    Google Scholar 

  53. S. Ramezani, A. Memariani, A fuzzy rule based system for fault diagnosis, using oil analysis results. Int. J. Ind. Eng. Prod. Res. 22, 91–98 (2011)

    Google Scholar 

  54. S.W. Choi, C. Lee, J.M. Lee, J.H. Park, I.B. Lee, Fault detection and identification of nonlinear processes based on kernel PCA. Chemom. Intell. Lab. Syst. 75(1), 55–67 (2005)

    Article  Google Scholar 

  55. G. Smits, A. Kordon, K. Vladislavleva, E. Jordaan, M. Kotanchek, Variable selection in industrial datasets using pareto genetic programming, in Genetic Programming Theory and Practice III (Springer, Boston, MA, 2006), pp. 79–92

    Google Scholar 

  56. B.S.J. Costa, P.P. Angelov, L.A. Guedes, Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150(Part A), 289–303 (2015)

    Article  Google Scholar 

  57. C.G. Bezerra, B.S.J. Costa, L.A. Guedes, P.P. Angelov, An evolving approach to unsupervised and real-time fault detection in industrial processes. Expert Syst. Appl. 63, 134–144 (2016)

    Article  Google Scholar 

  58. C.G. Bezerra, B.S.J. Costa, L.A. Guedes, P.P. Angelov, A comparative study of autonomous learning outlier detection methods applied to fault detection, in IEEE International Conference on Fuzzy Systems, 2015, pp. 1–7

    Google Scholar 

  59. B.S.J. Costa, P.P. Angelov, L.A. Guedes, Real-time fault detection using recursive density estimation. J. Control. Autom. Electr. Syst. 25(4), 428–437 (2014)

    Article  Google Scholar 

  60. B. Sielly, C.G. Bezerrat, L.A. Guedes, P.P. Angelov, C. Natal, Z. Norte, Online fault detection based on typicality and eccentricity data analytics, in International Joint Conference on Neural Networks, 2015, pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen P. Angelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelov, P.P., Gu, X. (2019). Anomaly Detection—Empirical Approach. In: Empirical Approach to Machine Learning. Studies in Computational Intelligence, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-030-02384-3_6

Download citation

Publish with us

Policies and ethics