Skip to main content

Cellules souches mésenchymateuses

  • Chapter
Réparations tissulaires à la jambe

Part of the book series: Collection ((APPRPRAT))

  • 799 Accesses

Résumé

Les cellules souches ont la double caractéristique de se différencier vers différents tissus et de se renouveler en gardant leur caractère de cellule souche. Les cellules souches mésenchymateuses (CSM) sont des progéniteurs multipotents donnant naissance et permettant la cicatrisation des tissus conjonctifs présents dans l’appareil moteur [1]: os (ostéoblastes), cartilage (chondrocytes), tendons (ténocytes), et aussi du tissu adipeux (adipocytes) et du stroma médullaire à différenciation vasculaire musculaire lisse. Au sein de l’os spongieux, elles se trouvent dans le même environnement que les cellules souches hématopoïétiques. De manière moins affirmée, elles donneraient naissance aux cellules musculaires sarcomériques (squelettiques et cardiaques), aux cellules endothéliales, voire à des cellules d’origine non mésodermique [1–5]. Les CSM ont été isolées par adhérence au plastique dans les années soixante par Friedenstein [6] à partir de la moelle osseuse d’animaux adultes. Les cellules adhérentes génèrent des colonies clonales de cellules fibroblastiques. Les cellules à l’origine de ces colonies sont appelées «colonyforming unit-fibroblasts» (CFU-F) et sont considérées comme des CSM. La différenciation des CSM en ostéoblaste est la plus anciennement connue. In vitro, elle n’est observée qu’avec des milieux spécifiques et certains facteurs de croissance. Les mécanismes de cette différenciation sont en cours d’analyse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Caplan AI (1991) Mesenchymal stem cells. J Ortho Res 9: 641–50

    Article  CAS  Google Scholar 

  2. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–4

    Article  PubMed  CAS  Google Scholar 

  3. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180–92

    Article  PubMed  CAS  Google Scholar 

  4. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20: 205–14

    Article  PubMed  CAS  Google Scholar 

  5. Bourin P, Sensebé L, Charbord P (2004) Les cellules souches mésenchymateuses (CSM), données, controverses, perspectives. Hématologie 6: 434–43

    Google Scholar 

  6. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3: 393–403

    PubMed  CAS  Google Scholar 

  7. Dominici M, Le Blanc K, Mueller I et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–7

    Article  PubMed  CAS  Google Scholar 

  8. Phinney DG (2002) Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem (Suppl 38): 7–12

    Article  Google Scholar 

  9. Connolly JF, Guse R, Tiedeman J, Dehne R (1989) Autologous marrow injection for delayed unions of the tibia: a preliminary report. J Orthop Trauma 3: 276–82

    Article  PubMed  CAS  Google Scholar 

  10. Hernigou P, Beaujean F (1997) Pseudarthroses traitées par greffe percutanée de moelle osseuse. Rev Chir Orthop 83: 495–504

    PubMed  CAS  Google Scholar 

  11. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bonemarrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J. Bone Joint Surg Am 87: 1430–7

    Article  PubMed  Google Scholar 

  12. Ateschrang A, Ochs BG, Lüdemann M, Weise K, Albrecht D (2009) Fibula and tibia fusion with cancellous allograft vitalised with autologous bone marrow: first results for infected tibial non-union. Arch Orthop Trauma Surg 129: 97–104

    Article  PubMed  Google Scholar 

  13. Dallari D, Savarino L, Stagni C et al. (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 89: 2413–20

    Article  PubMed  CAS  Google Scholar 

  14. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N (2007) Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop 27: 629–34

    Article  PubMed  Google Scholar 

  15. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop 29: 643–9

    Article  PubMed  Google Scholar 

  16. Kim SJ, Shin YW, Yang KH et al. (2009) A multicenter, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord. 10: 20–9

    Article  PubMed  Google Scholar 

  17. Bajada S, Harrison PE, Ashton BA et al. (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89: 1382–6

    Article  PubMed  CAS  Google Scholar 

  18. Wright JG, Yandow S, Donaldson S, Marley L (2008) Simple Bone Cyst Trial Group. A randomized clinical trial comparing intralesional bone marrow and steroid injections for simple bone cysts. J Bone Joint Surg Am 90: 722–30

    Article  PubMed  Google Scholar 

  19. Zamzam MM, Abak AA, Bakarman KA et al. (2009) Efficacy of aspiration and autogenous bone marrow injection in the treatment of simple bone cysts. Int Orthop 33: 1353–8

    Article  PubMed  Google Scholar 

  20. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF (1995) The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18: 1153–8

    PubMed  CAS  Google Scholar 

  21. Park IH, Micic ID, Jeon IH (2008) A study of 23 unicameral bone cysts of the calcaneus: open chip allergenic bone graft versus percutaneous injection of bone powder with autogenous bone marrow. Foot Ankle Int 29: 164–70

    Article  PubMed  Google Scholar 

  22. Leclerc E, David B, Griscom L et al. (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27: 586–95

    Article  PubMed  CAS  Google Scholar 

  23. Bigerelle M, Anselme K (2005) Statistical correlation between cell adhesion and proliferation on biocompatible metallic materials. J Biomed Mater Res A 72: 36–46

    Article  PubMed  CAS  Google Scholar 

  24. Berry CC, Dalby MJ, McCloy D, Affrossman S (2005) The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials 26: 4985–92

    Article  PubMed  CAS  Google Scholar 

  25. Quarto R, Mastrogiacomo M, Cancedda R et al. (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. New Engl J Med 344: 385–86

    Article  PubMed  CAS  Google Scholar 

  26. Marcacci M, Kon E, Moukhachev V et al. (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6-to 7-year outcome of a pilot clinical study. Tissue Eng 13: 947–55

    Article  PubMed  CAS  Google Scholar 

  27. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344: 1511–4

    Article  PubMed  CAS  Google Scholar 

  28. Morishita T, Honoki K, Ohgushi H et al. (2006) Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs 30: 115–8

    Article  PubMed  Google Scholar 

  29. Warnke PH, Springer IN, Wiltfang J et al. (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364: 766–70

    Article  PubMed  CAS  Google Scholar 

  30. Warnke PH, Wiltfang J, Springer I et al. (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 27: 3163–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Rosset, P. (2012). Cellules souches mésenchymateuses. In: Réparations tissulaires à la jambe. Collection Approche pratique en orthopédie — traumatologie . Springer, Paris. https://doi.org/10.1007/978-2-287-99066-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99066-3_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99065-6

  • Online ISBN: 978-2-287-99066-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics