Skip to main content

Drug Interactions with Medications Used for HIV/AIDS

  • Chapter
Handbook of Drug Interactions

Part of the book series: Forensic Science and Medicine ((FSM))

  • 489 Accesses

Abstract

The last decade has seen a combination of astounding successes and continuing challenges in the field of HIV treatment. The death rate as a result of AIDS in the United States has decreased significantly and consistently since 1996, because of current therapies (1). Unfortunately, the successes witnessed in the developed world have not been matched in the developing world where new treatments have generally not been available, such as in sub-Saharan Africa where over 20 million persons are believed to be infected with HIV. The decline in AIDS mortality in the United States has been seen in all racial/ethnic groups and both genders (1). Declining mortality has not been accompanied by decreases in incidence of HIV infection, however, so that the overall prevalence of HIV infection continues to rise. This is especially true for African Americans and for women, who have faster rising rates of HIV infection. Even with the dramatically increasing numbers of HIV-infected women, the incidence of HIV infection in newborns continues to fall as a result of effective antiretroviral treatment of pregnant HIV-infected women to prevent transmission to their babies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CDC. HIV and AIDS—United States, 1981–2000. MMWR 50:430–434 (2001).

    Google Scholar 

  2. Mullin SM, Jamjian CM, and Spruance SL. Antiretroviral adverse effects and interactions: clinical recognition and management. In: Sande MA and Volberding PA, eds. The medical management of AIDS. Philadelphia: Saunders, 1999:79–96.

    Google Scholar 

  3. 2001 USPHS/IDSA Guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. From the website, http://www.aidsinfo.nih. gov/guidelines.

    Google Scholar 

  4. Burman WJ, Gallicano K, and Peloquin C.Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis 28: 419–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Guidelines for the use of antiretroviral agents in hiv-infected adults and adolescents, February 4, 2002. From the website, http://www.aidsinfo.nih.gov/guidelines.

    Google Scholar 

  6. Piscitelli SC and Gallicano KD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med 344:984–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Piscitelli SC, Flexner C, Minor JR, Polis MA, and Masur H. Drug interactions in patients infected with human immunodeficiency virus. Clin Infect Dis 23:685–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Gerber JG. Using pharmacokinetics to optimize antiretroviral drug—drug interactions in the treatment of human immunodeficiency virus infection. Clin Infect Dis 30(Suppl 2):S123–S129 (2000).

    Article  Google Scholar 

  9. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 18:84–112 (1998).

    CAS  PubMed  Google Scholar 

  10. Eagling VA, Back DJ, and Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors ritonavir, saquinavir, and indinavir. Br J Clin Pharmacol 44: 190–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Cheng C-L, Smith DE, Carver PL, et al. Steady-state parmacokinetics of delaviridine in HIV-positive patients: effect on erythromycin breath test. Clin Pharmacol Ther 61:531–543 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kumar GN, Rodrigues AD, Buko AM, and Denissen JF. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277:423–431 (1996).

    CAS  PubMed  Google Scholar 

  13. Kupferschmidt HH, Fattinger KE, Ha HR, Follath F, and Krahenbuhl S. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 45:355–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Roby CA, Anderson GD, Kantor E, Dryer DA, and Burstein AH. St. John’s wort: effect on CYP3A4 activity. Clin Pharmacol Ther 67:451–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Foster BC, Gallicano K, Cameron W, and Choudhri SH. Constituents of garlic inhibit cytochrome P450 3A4-mediated drug metabolism. Can J Infect Dis 9(Suppl A):472P (1998).

    Google Scholar 

  16. Bailey DG, Malcolm J, Arnold MJ, and Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol 46:101–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104:147–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 46:111–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Pai VB and Nahata MC. Nelfinavir mesylate: a protease inhibitor. Ann Pharmacother 33: 325–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 53:292–297 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Piscitelli SC, Goss TF, Wilton JH, et al. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob Agents Chemother 35:1765–1771 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Hoggard PG, Kewn S, Barry MG, Khoo SH, and Back KJ. Effects of drugs on 2,3-dideoxy2,3-didehydrothymidine phosphorylation in vitro. Antimicrob Agents Chemother 41:1231–1236 (1997).

    CAS  PubMed  Google Scholar 

  24. Moore KHP, Yuen GJ, Raasch RH, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 59:550–558 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Tran JQ, Petersen C, Garrett M, et al. Pharmacokinetic interactions between delaviridine and reduced-dose amprenavir in HIV-negative adults following multiple dosing. In: Abstracts of the 39th Annual Meeting of the Infectious Diseases Society of America. San Francisco, October 25–28, 2001, Abstract 481 (2001).

    Google Scholar 

  26. Schutz M and Wendrow A. Quick reference guide to antiretrovirals. From the website http://www.medscape.com/Medscape/HIV/TreatmentUpdate/1998/tu0l/public/toc-eng.tu01.html (2001).

    Google Scholar 

  27. Gourevitch MN. Interactions between HIV-related medications and methadone. Mount Sinai J Med 68:227–228 (2001).

    CAS  Google Scholar 

  28. Lee BL, Tauber MG, Sadler B, et al. Atovaquone inhibits the glucuronidation and increases the plasma concentrations of zidovudine. Clin Pharmacol Ther 59:14 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ferry JJ, Herman BD, Carel BJ, Carlson GF, and Batts DH. Pharmacokinetic drug-drug interaction study of delaviridine and indinavir in healthy volunteers. J Acquir Immune Defic Syndr Hum Retrovirol 18:252–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interactions between rifabutin and delaviridine mesylate in HIV-1 infected patients. Antiviral Res 35:53–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Cox SR, Ferry JJ, Batts DH, et al. Delaviridine and marketed protease inhibitors: pharmacokinetic interaction studies in healthy volunteers: In: Programs and abstracts of the 4th Conference on Retroviruses and Opportunistic Infections. Washington, DC, January 22–26, 1997, Abstract 133 (1997).

    Google Scholar 

  32. Metroka CE, McMechan MF, Andrada R, et al. Failure of prophylaxis with dapsone in patients taking dideoxyinosine. N Engl J Med 325:737 (1991).

    CAS  PubMed  Google Scholar 

  33. Morse GD, Fischl MA, Shelton MJ, et al. Single dose pharmacokinetics of delaviridine mesylate and didanosine in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41:169 (1997).

    CAS  PubMed  Google Scholar 

  34. May DB, Drew RH, Yedinak KC, et al. Effect of simultaneous didanosine administration on itraconazole absorption in healthy volunteers. Pharmacotherapy 14:509 (1994).

    CAS  PubMed  Google Scholar 

  35. Knupp CA, Brater DC, Relue J, et al. Pharmacokinetics of didanosine and ketoconazole after administration to patients seropositive for the human immunodeficiency virus. J Clin Pharmacol 33:912 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hesse LM, von Moltke LL, Shader RI, and Greenblatt DJ. Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with buproprion. Drug Metab Disp 29:100–102 (2001).

    CAS  Google Scholar 

  37. Fiske WD, Benedek IH, White SJ, et al. Pharmacokinetic interaction between efavirenz and nelfinavir mesylate in healthy volunteers. In: Programs and abstracts of the 5th Conference on Retroviruses and Opportunistic Infections. Chicago, IL, February 1–5, 1998, Abstract 144 (1998).

    Google Scholar 

  38. Fiske W, Benedek IH, Joseph JL, et al. Pharmacokinetics of efavirenz and ritonavir after multiple oral doses in healthy volunteers, in Conference Record of the 12th World AIDS Conference. Geneva, June 28-July 3, 1998, Abstract 827 (1998).

    Google Scholar 

  39. Falloon J, Piscitelli S, Vogel S, Sadler H, Mitsuya M, Kavlick MF, et al. Combination therapy with amprenavir, abacavir, and efavirenz in human immunodeficiency virus-infected patients failing a protease inhibitor regimen: pharmacokinetic drug interactions and antiviral activity. Clin Infect Dis 30:313–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Duval X, Le Moing V, Longuet P, Leport C, Vilde JL, Lamotte C, et al. Efavirenz-induced decrease in plasma amprenavir levels in human immunodeficiency virus-infected patients and correction by ritonavir. Antimicrob Agents Chemother 44:2593 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Fiske WD, Mayers D, Wagner K, et al. Pharmacokinetics of DMP 266 and indinavir multiple oral doses in HIV-1 infected individuals. In: Programs and abstracts of the 4th Conference on Retroviruses and Opportunistic Infections. Washington, DC, January 22–26, 1997, Abstract 169 (1997).

    Google Scholar 

  42. Benedek IH, Fiske WD, White SJ, et al. Pharmacokinetic interaction between multiple doses of efavirenz and rifabutin in healthy volunteers. Clin Infect Dis 27:1008 (1998).

    Google Scholar 

  43. Piketty C, Race E, Castiel P, Belec L, Peytavin G, Si-Mohammed A, et al. Efficacy of a five-drug combination including ritonavir, saquinavir, and efavirenz in patients who failed on a conventional triple-drug regimen: phenotypic resistance to protease inhibitors predicts outcome of therapy. AIDS 13:F71-F77 (1999).

    Article  Google Scholar 

  44. Trapnell CB, Narang PK, Li R, and Lavelle JP. Increased plasma rifabutin levels with concomitant fluconazole therapy in HIV-infected patients. Ann Intern Med 124:573–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Varhe A, Olkkola KT, and Nevmonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 42:465–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Crussell-Porter LL, Rindone JP, Ford MA, and Jaskar DW. Low-dose fluconazole therapy potentiates the hypoprothrombinemic response of warfarin sodium. Arch Intern Med 153: 102–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Sahai J, Gallicano K, Pakuts A, and Cameron DW. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 169: 1103–1107 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Rosenthal E, Sala F, and Chichmanian R-M. Ergotism related to concurrent administration of ergotamine tartrate and indinavir. JAMA 281:987 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Indinavir pharmacokinetics study group. Indinavir (MK 639) drug interactions studies. In: Program and abstracts of the XI International AIDS Conference. Vancouver, B.C., July 7–12, 1996, Abstract MoB174 (1996).

    Google Scholar 

  50. Merry C, Barry MG, Ryan M, et al. Interaction of sildenafil and indinavir when coadministered to HIV positive patients. AIDS 13:F101-F107 (1999).

    Article  Google Scholar 

  51. Karyotakis NC and Anaissie EJ. The new antifungal azoles: fluconazole and itraconazole. Curr Opin Infect Dis 7:658–666 (1994).

    Article  Google Scholar 

  52. Kerr B, Lee C, Yuen G, et al. Overview of in vitro and in vivo drug interactions studies of nelfinavir mesylate, a new HIV-1 protease inhibitor. In: Programs and abstracts of the 4th Conference on Retroviruses and Opportunistic Infections. Washington, DC, January 22–26, 1997, Abstract 373 (1997).

    Google Scholar 

  53. Cox SR, Schneck DW, Herman BD, et al. Delaviridine and nelfinavir: a pharmacokinetic drug-drug interaction study in healthy adult volunteers. In: Programs and abstracts of the 5th Conference on Retroviruses and Opportunistic Infections. Chicago, February 1–5, 1998, Abstract 345 (1998).

    Google Scholar 

  54. Honda M, Yasuoka A, Aoki M, and Oka S. A generalized seizure following initiation of nelfinavir in a patient with human immunodeficiency virus type 1 infection, suspected due to interaction between nelfinavir and phenytoin. Intern Med 38:302–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Murphy RL, Sommadossi JP, Lamson M, et al. Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunodeficiency virus type 1. J Infect Dis 179:1116–1123 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Clarke SM, Mulcahy FM, Tjia J, et al. Pharmacokinetic interactions of nevirapine and methadone and guidelines for use of nevirapine to treat injection drug users. Clin Infect Dis 33:1595–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Sahai J, Cameron W, Salgo M, et al. Drug interaction study between saquinavir and nevirapine. In: Programs and abstracts of the 4th Conference on Retroviruses and Opportunistic Infections. Washington, DC, January 22–26, 1997, Abstract 178 (1997).

    Google Scholar 

  58. Polk RE, Israel DS, Patron R, et al. Pharmacokinetic interaction between 141W94 and rifabutin and rifampin after multiple dose administration. In: Programs and abstracts of the 5th Conference on Retroviruses and Opportunistic Infections. Chicago, February 1–5, 1998, Abstract 340 (1998).

    Google Scholar 

  59. Sadler B, Gillotin C, Chittick GE, and Symonds WT. Pharmacokinetic drug interactions with amprenavir. In: Conference record of the 12th World AIDS Conference. Geneva, June 28-July 3, 1998, Abstract 12389 (1998).

    Google Scholar 

  60. Hamzeh F, Benson C, Gerber J, et al. Steady-state pharmacokinetic interaction of modified-dose indinavir and rifabutin. In: Programs and abstracts of the 8th Conference on Retro-viruses and Opportunistic Infections. Chicago, IL, February 4–8, 2001, Abstract 742 (2001).

    Google Scholar 

  61. Sahai J, Stewart F, Swick L, et al. Rifabutin reduces saquinavir plasma levels in HIVinfected patients. In: Programs and abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC, Abstract A27 (1996).

    Google Scholar 

  62. Jorga K and Buss NE. Pharmacokinetic drug interactions with saquinavir soft gel capsule. In: Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, September 26–29, 1999, Abstract 20 (1999).

    Google Scholar 

  63. Centers for Disease Control. Notice to readers: updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors. MMWR 49: 185–189 (2000).

    Google Scholar 

  64. Centers for Disease Control. Prevention and treatment of tuberculosis among patients infected with human immunodeficiency virus: principles of therapy and revised recommendations. MMWR 47(RR-20):1–58 (1998).

    Google Scholar 

  65. Benedek IH, Joshi A, Fiske WD, et al. Pharmacokinetic interaction between efavirenz and rifampin in healthy volunteers. In: Conference record of the 12th World AIDS Conference. Geneva, June 28-July 3, 1998 (1998).

    Google Scholar 

  66. Ribera E, Pou L, Lopez RM, et al. Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 28: 450–453 (2001).

    CAS  PubMed  Google Scholar 

  67. Veldkamp AI, Hoetelmans MW, Beijnen JH, et al. Ritonavir enables combined therapy with rifampin and saquinavir. Clin Infect Dis 29:1586 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 48:168–179 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Alprazolam-ritonavir interaction: implications for product labeling. Clin Pharmacol Ther 67:335–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Degen O, Kurowski M, Van Lunzen J, Schewe CK, and Stelbrink H-J. Amprenavir and ritonavir: intraindividual comparison of different doses and influence of concomitant NNRTI on steady-state pharmacokinetics in HIV-infected patients. In: Programs and abstracts of the 8th Conference on Retroviruses and Opportunistic Infections. Chicago, February 4–8, 2001, Abstract 739 (2001).

    Google Scholar 

  71. Montero A, Giovannoni AG, and Tvrde PL. Leg ischemia in a patient receiving ritonavir and ergotamine. Ann Intern Med 130:329–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. DeSilva KE, Le Flore DB, Marston BJ, and Rimland D. Serotonin syndrome in HIV-infected individuals receiving antiretroviral therapy and fluoxetine. AIDS 15:1281–1285 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers. Antimicrob Agents Chemother 42:2784–2791 (1998).

    CAS  PubMed  Google Scholar 

  74. van Heeswijk RPG, Veldkamp AI, Hoetelmans RMW, et al. The steady state plasma pharmacokinetics of indinavir alone and in combination with a low dose of ritonavir in twice daily dosing regimens in HIV-l infected individuals. AIDS 13:F95-F99 (1999).

    Article  Google Scholar 

  75. Henry JA and Hill IR. Fatal interaction between ritonavir and MDMA. Lancet 352:1751–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Kurowski M, Kaeser B, Mroziekiewicz A, et al. The influence of low doses of ritonavir on the pharmacokinetics of nelfinavir 1250 mg bid. In: Programs and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, September 17–20, 2000, Abstract 333 (2000).

    Google Scholar 

  77. Flexner C, Hsu A, Kerr B, et al. Steady-state pharmacokinetic interactions between ritonavir, nelfinavir, and the nelfinavir active metabolite M8 (AG1402). In: Conference record of the 12th World AIDS Conference. Geneva, June 28-July 3, 1998, Abstract 42265 (1998).

    Google Scholar 

  78. Hsu A, Granneman GR, and Bertz RJ. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35:275–291 (1998). [Erratum, Clin Pharmacokinet 35:473.]

    Article  CAS  PubMed  Google Scholar 

  79. Cato A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 63:414–421 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors, ritonavir and saquinavir. Clin Pharmacol Ther 63:453–464 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Merry C, Barry MG, Mulcahy FM, et al. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-1 infected patients. AIDS 11:F29-F33 (1997).

    Article  Google Scholar 

  82. Muirhead GJ, Wulff MB, Fielding A, Kleinermans D, and Buss N. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br J Clin Pharmacol 50:99–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Hsu A, Granneman GR, Witt G, Cavanaugh JH, and Leonard J. Assessment of multiple doses of ritonavir on the pharmacokinetics of theophylline. In: Program and abstracts of the XI International AIDS Conference. Vancouver, B.C., July 7–12, 1996, 89 (1996).

    Google Scholar 

  84. Knoell KR, Young TM, and Cousins ES. Potential interaction involving warfarin and ritonavir. Ann Pharmacother 32:1299–1302 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Flaherty JF, Kearney B, Wolf J, et al. Coadministration of tenofovir DF and didanosine: a pharmacokinetic and safety evaluation. In: Programs and abstracts of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 1729 (2001).

    Google Scholar 

  86. Merrill DP, Manion KJ, Chou TC, and Hirsch MS. Antagonism between human immunodeficiency virus type 1 protease inhibitors indinavir and saquinavir in vitro. J Infect Dis 176:265–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Rutschmann OT, Opravil M, Iten A, et al. A placebo-controlled trial of didanosine plus stavudine, with and without hydroxyurea, for HIV infection. The Swiss HIV Cohort Study. AIDS 12:F71–F77 (1998).

    Article  Google Scholar 

  88. Goodrich J and Khardori N. Hydroxyurea toxicity in human immunodeficiency virus-positive patients. Clin Infect Dis 29:692–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Weissman SB, Sinclair GI, Green CL, and Fissell WH. Hydroxurea-induced hepatitis in human immunodeficiency virus-positive patients. Clin Infect Dis 29:223–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Hochster H, Dieterich D, Bozzette S, et al. Toxicity of combined ganciclovir and zidovudine for cytomegalovirus disease associated with AIDS: an AIDS clinical trials group study. Ann Intern Med 113:111–117 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Causey D. Concomitant ganciclovir and zidovudine treatment for cytomegalovirus retinitis in patients with HIV infection: an approach to treatment. J Acquir Immune Defic Syndr 4(Suppl 1):S16–S21 (1991).

    Google Scholar 

  92. Burger DM, Meenhorst PL, Koks CHW, and Beijnen JH. Drug interactions with zidovudine. AIDS 7:445–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Fortgang IS, Belitsos PC, Chaisson RE, and Moore RD. Hepatomegaly and steatosis in HIV-infected patients receiving nucleoside analog antiretroviral therapy. Am J Gastroenterol 90:1433–1436 (1995).

    CAS  PubMed  Google Scholar 

  94. Boxwell DE and Styrt BA. Lactic acidosis in patients receiving nucleoside reverse transcriptase inhibitors. In: Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, September 26–29, 1999, Abstract 1284 (1999).

    Google Scholar 

  95. Lonergan JT, Behling C, Pfander H, et al. Hyperlactatemia and hepatic abnormalities in 10 human immunodeficiency virus-infected patients receiving nucleoside analogue combination regimens. Clin Infect Dis 31:162–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Lonergan JT, Havlir D, and Barber E, and Mathews WC. Incidence of symptomatic hyperlactatemia in HIV-infected adults on NRTIs. In: Programs and Abstracts of the 9th Conference on Retroviruses and Opportunistic Infections. Seattle, WA, February 24–28, 2002, Abstract 35 (2002).

    Google Scholar 

  97. Bristol-Myers Squibb Company. Healthcare provider important drug warning letter. January 5, 2001. Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, December 16–19, 2001, Abstract 1729 (2001).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frank, M. (2004). Drug Interactions with Medications Used for HIV/AIDS. In: Mozayani, A., Raymon, L.P. (eds) Handbook of Drug Interactions. Forensic Science and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-654-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-654-6_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-424-1

  • Online ISBN: 978-1-59259-654-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics