Skip to main content

Drug Interactions with Benzodiazepines

Epidemiologic Correlates with Other CNS Depressants and In Vitro Correlates with Inhibitors and Inducers of Cytochrome P450 3A4

  • Chapter
Handbook of Drug Interactions

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

The purpose of this chapter is to examine the drug interactions that occur with benzodiazepines and discuss the relevance of these interactions to the field of medicine in general with an emphasis on forensic toxicology. Because of the diverse nature of the benzodiazepines, some time has been taken to introduce this class of drugs. This introductory material has drawn upon some basic reference material and reviews (1–8), and is not otherwise referenced, except for specific points that did not come from these references. The primary literature will be more thoroughly cited in later sections presenting evidence of interactions with other central nervous system (CNS) depressants and specific enzyme involvement in the metabolism of benzodiazepines and drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. Greenblatt DJ, Shader RI, and Abernethy DR. Drug therapy. Current status of benzodiazepines. First of two parts. N Engl J Med 309:354–358 (1983).

    CAS  PubMed  Google Scholar 

  2. Greenblatt DJ, Shader RI, and Abernethy DR. Drug therapy. Current status of benzodiazepines. Second of two parts. N Engl J Med 309:410–416 (1983).

    CAS  PubMed  Google Scholar 

  3. Jones GR and Singer PP. The newer benzodiazepines. In: Baselt RC, ed. Analytical toxicology, vol. 2. Chicago: Year Book Medical Publishers, 1989:1–69.

    Google Scholar 

  4. Hobbs WR, Rail TW, and Verdoorn TA. Hypnotics and sedatives: ethanol. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, and Gilman AG, eds. Goodman & Gilman’s The pharmacological basis of therapeutics. New York: McGraw-Hill, 1996:361–396.

    Google Scholar 

  5. Benet LZ, Oie S, and Schwartz JB. Design and optimization of dosage regimes: pharmacokinetic data. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, and Gilman AG, eds. Goodman & Gilman’s The pharmacological basis of therapeutics. New York: McGraw-Hill, 1996:1707–1792.

    Google Scholar 

  6. Baselt RC and Cravey RH. Disposition of toxic drugs and chemicals in man. Foster City, CA: Chemical Toxicology Institute, 1995.

    Google Scholar 

  7. Parfitt K. Martindale the complete drug reference, 1999.

    Google Scholar 

  8. Murray L. Physicians’ desk reference. (2002).

    Google Scholar 

  9. Ishigami M, Honda T, Takasaki W, Ikeda T, Komai T, Ito K, and Sugiyama Y. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-COA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 29: 282–288 (2001).

    CAS  PubMed  Google Scholar 

  10. Sethy VH, Collins RJ, and Daniels EG. Determination of biological activity of adinazolam and its metabolites. J Pharm Pharmacol 36:546–548 (1984).

    CAS  PubMed  Google Scholar 

  11. Fleishaker JC and Phillips JP. Adinazolam pharmacokinetics and behavioral effects following administration of 20–60 mg doses of its mesylate salt in volunteers. Psychopharmacology 99:34–39 (1989).

    CAS  PubMed  Google Scholar 

  12. Borchers F, Achtert G, Hausleiter HJ, and Zeugner H. Metabolism and pharmacokinetics of metaclazepam (Talis®), Part III: Determination of the chemical structure of metabolites in dogs, rabbits and men. Eur J Drug Metab Pharmacokinet 9:325–346 (1984).

    CAS  PubMed  Google Scholar 

  13. Lu X-L and Yang SK. Enantiomer resolution of camazepam and its derivatives and enantioselective metabolism of camazepam by human liver microsomes. J Chromatogr A 666: 249–257 (1994).

    CAS  PubMed  Google Scholar 

  14. Tomori E, Horvath G, Elekes I, Lang T, and Korosi J. Investigation of the metabolites of tofizopam in man and animals by gas-liquid chromatography-mass spectrometry. J Chromatogr A 241:89–99 (1982).

    CAS  Google Scholar 

  15. Wrighton SA, Vandenbranden M, Stevens JC, Shipley LA, Ring BJ, Rettie AE, and Cashman JR. In vitro methods for assessing human drug metabolism: their use in drug development. Drug Metab Rev 25:453–484 (1993).

    CAS  PubMed  Google Scholar 

  16. Rodrigues AD. Use of in vivo human metabolism studies in drug development: an industrial perspective. Biochem Pharmacol 48:2147–2156 (1994).

    CAS  PubMed  Google Scholar 

  17. Guengerich FP. In vitro techniques for studying drug metabolism. J Pharmacokin Biopharm 24:521–533 (1996).

    CAS  Google Scholar 

  18. Crespi CL and Miller VP. The use of heterologously expressed drug metabolizing enzymes —state of the art and prospects for the future. Pharmacol Ther 84:121–131 (1999).

    CAS  PubMed  Google Scholar 

  19. Venkatakrishnan K, Von Moltke LL, Court MH, Harmatz JS, Crespi CL, and Greenblatt DJ. Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between approaches. Drug Metab Dispos 28:1493–1504 (2000).

    CAS  PubMed  Google Scholar 

  20. Nelson AC, Huang W, and Moody DE. Variables in human liver microsome preparation: impact on the kinetics of l-α-acetylmethadol (LAAM) N-demethylation and dextromethorphan 0-demethylation. Drug Metab Dispos 29:319–325 (2001).

    CAS  PubMed  Google Scholar 

  21. Newton DJ, Wang RW, and Lu AYH. Cytochrome P450 inhibitors: evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 23:154–158 (1995).

    CAS  PubMed  Google Scholar 

  22. Ono S, Hatanaka T, Hotta H, Satoh T, Gonzalez FJ, and Tsutsui M. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 26:681–693 (1996).

    CAS  PubMed  Google Scholar 

  23. Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, and Shou M. Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica 30:327–343 (2000).

    CAS  PubMed  Google Scholar 

  24. Moody DE, James JL, Clawson GA, and Smuckler EA. Correlations among changes in hepatic microsomal components after intoxication with alkyl halides. Mol Pharmacol 20:685–693 (1981).

    CAS  PubMed  Google Scholar 

  25. Shimada T, Tsumura F, and Yamazaki H. Prediction of human liver microsomal oxidations of 7-ethoxycoumarin and chlorzoxazone with kinetic parameters of recombinant cytochrome P-450 enzymes. Drug Metab Dispos 27:1274–1280 (1999).

    CAS  PubMed  Google Scholar 

  26. Andersson T, Miners JO, Veronese ME, and Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 38:131–137 (1994).

    CAS  PubMed  Google Scholar 

  27. Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez FJ, and Satoh H. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 26:1155–1166 (1996).

    CAS  PubMed  Google Scholar 

  28. Yang TJ, Shou M, Korzekwa KR, Gonzalez FJ, Gelboin HV, and Yang SK. Role of cDNA-expressed human cytochromes P450 in the metabolism of diazepam. Biochem Pharmacol 55:889–896 (1998).

    CAS  PubMed  Google Scholar 

  29. Yang TJ, Krausz KW, Sai Y, Gonzalez FJ, and Gelboin HV. Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-eth-oxycoumarin, and imipramine metabolism. Drug Metab Dispos 27:102–109 (1999).

    CAS  PubMed  Google Scholar 

  30. Shou MG, Lu T, Krausz KW, Sai Y, Yang TJ, Korzekwa KR, et al. Use of inhibitory monoclonal antibodies to assess the contribution of cytochromes P450 to human drug metabolism. Eur J Pharmacol 394:199–209 (2000).

    CAS  PubMed  Google Scholar 

  31. Fabre G, Rahmani R, Placidi M, Combalbert J, Covo J, Cano J-P, et al. Characterization of midazolam metabolism using hepatic microsomal fractions and hepatocytes in suspension obtained by perfusing whole human livers. Biochem Pharmacol 37:4389–4397 (1988).

    CAS  PubMed  Google Scholar 

  32. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, and Meyer UA. Oxidation of midazolam and triazolam by human liver cytochrome P4501I1A4. Mol Pharmacol 36:89–96 (1989).

    CAS  PubMed  Google Scholar 

  33. Gorski JC, Hall SD, Vandenbranden M, Wrighton SA, and Jones DR. Regioselective biotransformation of midazolam by members of the human cytochrome p450 3A (CYP3A) subfamily. Biochem Pharmacol 47:1643–1653 (1994).

    CAS  PubMed  Google Scholar 

  34. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, et al. Use of midazolam as a human cytochrome P450 3 probe: in vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271:54956 (1994).

    Google Scholar 

  35. Wandel C, Bocker R, Bohrer H, Browne A, Rugheimer E, and Martin E. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaesth 73:658–661 (1994).

    CAS  PubMed  Google Scholar 

  36. Wrighton SA and Ring BJ. Inhibition of human CYP3A catalyzed 1 ′-hydroxy midazolam formation by ketoconazole, nifedipine, erythromycin, cimetidine, and nizatidine. Pharm Res 11:921–924 (1994).

    CAS  PubMed  Google Scholar 

  37. Ghosal A, Satoh H, Thomas PE, Bush E, and Moore D. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cDNA-expressed human cytochrome P450. Drug Metab Dispos 24:940–947 (1996).

    CAS  PubMed  Google Scholar 

  38. von Moltke LL, Greenblatt DJ, Schmider J, Duan SX, Wright CE, Harmatz JS, and Shader RI. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 36:783–791 (1996).

    Google Scholar 

  39. Ekins S, Vandenbranden M, Ring BJ, Gillespie JS, Yang TJ, Gelboin HV, and Wrighton SA. Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther 286:1253–1259 (1998).

    CAS  PubMed  Google Scholar 

  40. Wandel C, Bocker RH, Bohrer H, deVries JX, Hofman W, Walter K, et al. Relationship between hepatic cytochrome P450 3A content and activity and the disposition of midazolam administered orally. Drug Metab Dispos 26:110–114 (1998).

    CAS  PubMed  Google Scholar 

  41. Perloff MD, von Moltke LL, Court MH, Kotegawa T, Shader RI, and Greenblatt DJ. Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. J Pharmacol Exp Ther 292:618–628 (2000).

    CAS  PubMed  Google Scholar 

  42. Hamaoka N, Oda Y, Hase I, and Asada A. Cytochrome P4502B6 and 2C9 do not metabolize midazolam: kinetic analysis and inhibition study with monoclonal antibodies. Brit J Anaesth 86:540–544 (2001).

    CAS  PubMed  Google Scholar 

  43. Schmider J, Greenblatt DJ, von Moltke LL, Harmatz JS, Duan SX, Karsov D, and Shader RI. Characterization of six in vitro reactions mediated by human cytochrome P450: application to the testing of cytochrome P450-directed antibodies. Pharmacology 52:125–134 (1996).

    CAS  PubMed  Google Scholar 

  44. Gorski JC, Jones DR, Hamman MA, Wrighton SA, and Hall SD. Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily. Xenobiotica 29:931–944 (1999).

    CAS  PubMed  Google Scholar 

  45. Hirota N, Ito K, Iwatsubo T, Green CE, Tyson CA, Shimada N, et al. In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm Drug Dispos 22:53–71 (2001).

    CAS  PubMed  Google Scholar 

  46. Venkatakrishnan K, von Moltke LL, Duan SX, Fleishaker JC, Shader RI, and Greenblatt DJ. Kinetic characterization and identification of the enzymes responsible for hepatic biotransformation of adinazolam and N-desmethyladinazolam in man. J Pharm Pharmacol 50: 265–274 (1998).

    CAS  PubMed  Google Scholar 

  47. Coller JK, Somogyi AA, and Bochner F. Flunitrazepam oxidative metabolism in human liver microsomes: involvement of CYP2C19 and CYP3A4. Xenobiotica 29:973–986 (1999).

    CAS  PubMed  Google Scholar 

  48. Hesse LM, Venkatakrishnan K, von Moltke LL, Shader RI, and Greenblatt DJ. CYP3A4 is the major CYP isoform mediating the in vitro hydroxylation and demethylation of flunitrazepam. Drug Metab Dispos 29:133–140 (2001).

    CAS  PubMed  Google Scholar 

  49. Kilicarslan T, Haining RL, Rettie AE, Busto U, Tyndale RF, and Sellers EM. Flunitrazepam metabolism by cytochrome P450s 2C19 and 3A4. Drug Metab Dispos 29:460–465 (2001).

    CAS  PubMed  Google Scholar 

  50. Senda C, Kishimoto W, Sakai K, Nagakura A, and Igarashi T. Identification of human cytochrome P450 isoforms involved in the metabolism of brotizolam. Xenobiotica 27:913–922 (1997).

    CAS  PubMed  Google Scholar 

  51. Shimada T, Yamazaki H, Mimura M, Inui Y, and Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423 (1994).

    CAS  PubMed  Google Scholar 

  52. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Sawe J, and Villen T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 45:348–355 (1989).

    CAS  PubMed  Google Scholar 

  53. Abernethy DR, Greenblatt DJ, Ochs HR, and Shader RI. Benzodiazepine drug-drug interactions commonly occurring in clinical practice. Curr Med Res Opin 8(Suppl 4):80–93 (1984).

    CAS  PubMed  Google Scholar 

  54. Abernethy DR, Greenblatt DJ, and Shader RI. Benzodiazepine hypnotic metabolism: drug interactions and clinical implications. Acta Psychiatr Scand 74(Suppl 332):32–38 (1986).

    Google Scholar 

  55. Yuan R, Flockhart DA, and Balian JD. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J Clin Pharmacol 39:1109–1125 (1999).

    CAS  PubMed  Google Scholar 

  56. Sellers EM and Busto U. Benzodiazepines and ethanol: assessment of the effects and consequences of psychotropic drug interactions. J Clin Psychopharmacol 2:249–262 (1982).

    CAS  PubMed  Google Scholar 

  57. Chan AWK. Effects of combined alcohol and benzodiazepine: a review. Drug Alcohol Depend 13:315–341 (1984).

    CAS  PubMed  Google Scholar 

  58. Linnoila MI. Benzodiazepines and alcohol. J Psychiat Res 24(Suppl 2):121–127 (1990).

    PubMed  Google Scholar 

  59. Tanaka E. Toxicological interactions between alcohol and benzodiazepines. Clin Toxicol 40:69–75 (2002).

    CAS  Google Scholar 

  60. Serfaty M and Masterton G. Fatal poisonings attributed to benzodiazepines in Britain during the 1980s. Br J Psychiatry 163:386–393 (1993).

    CAS  PubMed  Google Scholar 

  61. Buckley NA, Dawson AH, Whyte IM, and O’Connell DL. Relative toxicity of benzodiazepines in overdose. Br Med J 310:219–221 (1995).

    CAS  Google Scholar 

  62. Busto U, Kaplan HL, and Sellers EM. Benzodiazepine-associated emergencies in Toronto. Am J Psychiatry 137:224–227 (1980).

    CAS  PubMed  Google Scholar 

  63. Finkle BS, McCloskey KL, and Goodman LS. Diazepam and drug-associated deaths: a survey in the United States and Canada. J Am Med Assoc 242:429–434 (1979).

    CAS  Google Scholar 

  64. Hojer J, Baehrendtz S, and Gustafsson L. Benzodiazepine poisoning: experience of 702 admissions to an intensive care unit during a 14-year period. J Int Med 226:117–122 (1989).

    CAS  Google Scholar 

  65. Richards RG, Reed D, and Cravey RH. Death from intravenously administered narcotics: a study of 114 cases. J Forensic Sci 21:467–482 (1976).

    CAS  PubMed  Google Scholar 

  66. Monforte JR. Some observations concerning blood morphine concentrations in narcotic addicts. J Forensic Sci 22:718–724 (1977).

    CAS  PubMed  Google Scholar 

  67. Goldberger BA, Cone EJ, Grant TM, Caplan YH, Levine BS, and Smialek JE. Disposition of heroin and its metabolites in heroin-related deaths. J Anal Toxicol 18:22–28 (1994).

    CAS  PubMed  Google Scholar 

  68. Walsh SL, Preston KL, Stitzer ML, Cone EJ, and Bigelow GE. Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther 55:569–580 (1994).

    CAS  PubMed  Google Scholar 

  69. Reynaud M, Tracqui A, Petit G, Potard D, and Courty P. Six deaths linked to misuse of buprenorphine-benzodiazepine combinations. Am J Psychiatry 155:448–449 (1998).

    CAS  PubMed  Google Scholar 

  70. Papworth DP. High dose buprenorphine for postoperative analgesia. Anaesthesia 38:163 (1983).

    CAS  PubMed  Google Scholar 

  71. Forrest AL. Buprenorphine and lorazepam. Anaesthesia 38:598 (1983).

    CAS  PubMed  Google Scholar 

  72. Faroqui MH, Cole M, and Curran J. Buprenorphine, benzodiazepines and respiratory depression. Anaesthesia 38:1002–1003 (1983).

    CAS  PubMed  Google Scholar 

  73. Gueye PN, Borron SW, Risede P, Monier C, Buneaux F, Debray M, and Baud FJ. Buprenorphine and midazolam act in combination to depress respiration in rats. Toxicol Sci 65: 107–114 (2002).

    CAS  PubMed  Google Scholar 

  74. Kilicarslan T and Sellers EM. Lack of interaction of buprenorphine with flunitrazepam metabolism. Am J Psychiatry 157:1164–1166 (2000).

    CAS  PubMed  Google Scholar 

  75. Crouch DJ, Birky MM, Gust SW, Rollins DE, Walsh JM, Moulden JV, et al. The prevalence of drugs and alcohol in fatally injured truck drivers. J Forensic Sci 38:1342–1353 (1993).

    CAS  PubMed  Google Scholar 

  76. Lund AK, Preusser DF, Blomberg RD, and Williams AF. Drug use by tractor-trailer drivers. J Forensic Sci 33:648–661 (1988).

    CAS  PubMed  Google Scholar 

  77. Couper FJ, Pemberton M, Jarvis A, Hughes M, and Logan BK. Prevalence of drug use in commercial tractor-trailer drivers. J Forensic Sci 47:562–567 (2002).

    PubMed  Google Scholar 

  78. Moody DE, Crouch DJ, Andrenyak DM, Smith RP, Wilkins DG, Hoffman AM, and Rollins DE. Mandatory post-accident drug and alcohol testing for the Federal Railroad Administration: a comparison of results for two consecutive years. NIDA Res Mono 100:79–96 (1991).

    Google Scholar 

  79. Lundberg GD, White JM, and Hoffman KI. Drugs (other than or in addition to ethyl alco hol) and driving behavior: a collaborative study of the California Association of Toxicologists. J Forensic Sci 24:207–215 (1979).

    CAS  PubMed  Google Scholar 

  80. Poklis A, MaGinn D, and Barr JL. Drug findings in “driving under the influence of drugs” cases: a problem of illicit drug use. Drug Alcohol Depend 20:57–62 (1987).

    CAS  PubMed  Google Scholar 

  81. Jonasson U, Jonasson B, Saldeen T, and Thuen F. The prevalence of analgesics containing dextropropoxyphene or codeine in individuals suspected of driving under the influence of drugs. Forensic Sci Int 112:163–169 (2000).

    CAS  PubMed  Google Scholar 

  82. Logan BK and Couper FJ. Zolpidem and driving impairment. J Forensic Sci 46:105–110 (2001).

    CAS  PubMed  Google Scholar 

  83. Preston KL, Griffiths RR, Stitzer ML, Bigelow GE, and Liebson IA. Diazepam and methadone interactions in methadone maintenance. Clin Pharmacol Ther 36:534–541 (1984).

    CAS  PubMed  Google Scholar 

  84. Preston KL, Griffiths RR, Cone EJ, Darwin WD, and Gorodetzky CW. Diazepam and methadone blood levels following concurrent administration of diazepam and methadone. Drug Alcohol Depend 18:195–202 (1986).

    CAS  PubMed  Google Scholar 

  85. Abernethy DR, Greenblatt DJ, Morse DS, and Shader RI. Interaction of propoxyphene with diazepam, alprazolam and lorazepam. Br J Clin Pharmacol 19:51–57 (1985).

    CAS  PubMed  Google Scholar 

  86. Gamble JAS, Kawar P, Dundee JW, Moore J, and Briggs LP. Evaluation of midazolam as an intravenous induction agent. Anaesthesia 36:868–873 (1981).

    CAS  PubMed  Google Scholar 

  87. Boldy DAR, English JSC, Lang GS, and Hoare AM. Sedation for endoscopy: a comparison between diazepam, and diazepam plus pethidine with naloxone reversal. Br J Anaesth 56:1109–1111 (1984).

    CAS  PubMed  Google Scholar 

  88. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, and Kissin I. Midazolam-morphine sedative interaction in patients. Anesth Analges 68:282–285 (1989).

    CAS  Google Scholar 

  89. Kanto J, Sjovall S, and Vuori A. Effect of different kinds of premedication on the induction properties of midazolam. Br J Anaesth 54:507–511 (1982).

    CAS  PubMed  Google Scholar 

  90. Tomicheck RC, Rosow CE, Philbin DM, Moss J, Teplick RS, and Scheider RC. Diazepam-fentanyl interaction—hemodynamic and hormonal effects in coronary artery surgery. Anesth Analg 62:881–884 (1983).

    CAS  PubMed  Google Scholar 

  91. Dundee JW, Halliday NJ, McMurray TJ, and Harper KW. Pretreatment with opioids: the effect on thiopentone induction requirements and on the onset of action of midazolam. Anaesthesia 41:159–161 (1986).

    CAS  PubMed  Google Scholar 

  92. Bailey PL, Pace NL, Ashburn MA, Moll JWB, East KA, and Stanley TH. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology 73:826–830 (1990).

    CAS  PubMed  Google Scholar 

  93. Ben-Shlomo I, Abd-El-Khalim H, Ezry J, Zohar S, and Tverskoy M. Midazolam acts synergistically with fentanyl for induction of anaesthesia. Br J Anaesth 64:45–47 (1990).

    CAS  PubMed  Google Scholar 

  94. Silbert BS, Rosow CE, Keegan CR, Latta WB, Murphy AL, Moss J, and Philbin DM. The effect of diazepam on induction of anesthesia with alfentanyl. Anesth Analg 65:71–77 (1986).

    CAS  PubMed  Google Scholar 

  95. Vinik HR, Bradley EL, and Kissin I. Midazolam-alfentanyl synergism for anesthetic induction in patients. Anesth Analg 69:213–217 (1989).

    CAS  PubMed  Google Scholar 

  96. Short TG, Plummer JL, and Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanyl. Br J Anaesth 69:162–167 (1992).

    CAS  PubMed  Google Scholar 

  97. Hase I, Oda Y, Tanaka K, Mizutani K, Nakamoto T, and Asada A. Iv. fentanyl decreases the clearance of midazolam. Br J Anaesth 79:740–743 (1997).

    CAS  PubMed  Google Scholar 

  98. Yun CH, Wood M, Wood AJJ, and Guengerich FP. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 77:467–474 (1992).

    CAS  PubMed  Google Scholar 

  99. Labroo RB, Thummel KE, Kunze KL, Podoll T, Trager WF, and Kharasch ED. Catalytic role of cytochrome P4503A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 23:490–496 (1995).

    CAS  PubMed  Google Scholar 

  100. Tateishi T, Krivoruk Y, Ueng YF, Wood AJJ, Guengerich FP, and Wood M. Identification of human liver cytochrome p-450 3A4 as the enzyme responsible for fentanyl and sufentanil n-dealkylation. Anesth Analg 82:167–172 (1996).

    CAS  PubMed  Google Scholar 

  101. Guitton J, Buronfosse T, Desage M, Flinois J-P, Perdrix J-P, Brazier J-L, and Beaune P. Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth 80:788–795 (1998).

    CAS  PubMed  Google Scholar 

  102. Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, and Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Brit J Anaesth 82: 900–903 (1999).

    CAS  PubMed  Google Scholar 

  103. Swift R, Davidson D, Rosen S, Fitz E, and Camara P. Naltrexone effects on diazepam intoxication and pharmacokinetics in humans. Psychopharmacology 135:256–262 (1998).

    CAS  PubMed  Google Scholar 

  104. Tverskoy M, Fleyshman G, Bradley EL, and Kissin I. Midazolam-thiopental anesthetic interaction in patients. Anesth Analg 67:342–345 (1988).

    CAS  PubMed  Google Scholar 

  105. Short TG, Galletly DC, and Plummer JL. Hypnotic and anaesthetic action of thiopentone and midazolam alone and in combination. Br J Anaesth 66:13–19 (1991).

    CAS  PubMed  Google Scholar 

  106. Short TG and Chui PT. Propofol and midazolam act synergistically in combination. Br J Anaesth 67:539–545 (1991).

    CAS  PubMed  Google Scholar 

  107. McClune S, McKay AC, Wright PMC, Patterson CC, and Clarke RSJ. Synergistic interaction between midazolam and propofol. Br J Anaesth 69:240–245 (1992).

    CAS  PubMed  Google Scholar 

  108. Hamaoka N, Oda Y, Hase I, Mizutani K, Nakamoto T, Ishizaki T, and Asada A. Propofol decreases the clearance of midazolam by inhibiting CYP3A4: an in vivo and in vitro study. Clin Pharmacol Ther 66:110–117 (1999).

    CAS  PubMed  Google Scholar 

  109. Miller E and Park GR. The effect of oxygen on propofol-induced inhibition of microsomal cytochrome P450 3A4. Anaesthesia 54:320–322 (1999).

    CAS  PubMed  Google Scholar 

  110. Bond A, Silveira JC, and Lader M. Effects of single doses of alprazolam and alcohol alone and in combination on psychological performance. Hum Psychopharmacol 6:219–228 (1991).

    CAS  Google Scholar 

  111. Taeuber K, Badian M, Brettel HF, Royen T, Rupp W, Sittig W, and Uihlein M. Kinetic and dynamic interaction of clobazam and alcohol. Br J Clin Pharmacol 7:91S-97S (1979).

    PubMed  Google Scholar 

  112. Seppala T, Palva ES, Mattila MJ, Kortilla K, and Shrotriya RC. Tofisopam, a novel 3,4benzodiazepine: multiple-dose effects on psychomotor skills and memory. Comparison with diazepam and interactions with ethanol. Psychopharmacology 69:209–218 (1980).

    CAS  PubMed  Google Scholar 

  113. Saario I. Psychomotor skills during subacute treatment with thioridazine and bromazepam, and their combined effects with alcohol. Ann Clin Res 8:117–123 (1976).

    CAS  PubMed  Google Scholar 

  114. McManus IC, Ankier SI, Norfolk J, Phillips M, and Priest RG. Effects of psychological performance of the benzodiazepine, loprazolam, alone and with alcohol. Br J Clin Pharmacol 16:291–300 (1983).

    CAS  PubMed  Google Scholar 

  115. Palva ES and Linnoila M. Effect of active metabolites of chlordiazepoxide and diazepam, alone or in combination with alcohol, on psychomotor skills related to driving. Eur J Clin Pharmacol 13:345–350 (1978).

    CAS  PubMed  Google Scholar 

  116. Linnoila M, Stapleton JM, Lister R, Moss H, Lane E, Granger A, and Eckardt MJ. Effects of single doses of alprazolam and diazepam, alone and in combination with ethanol, on psychomotor and cognitive performance and on automatic nervous system reactivity in healthy volunteers. Eur J Clin Pharmacol 39:21–28 (1990).

    CAS  PubMed  Google Scholar 

  117. Linnoila M and Hakkinen S. Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving. Clin Pharmacol Ther 15:368–373 (1974).

    CAS  PubMed  Google Scholar 

  118. Sellers EM, Frecker RC, and Romach MK. Drug metabolism in the elderly: confounding of age, smoking, and ethanol effects. Drug Metab Rev 14:225–250 (1983).

    CAS  PubMed  Google Scholar 

  119. de la Maza MP, Hirsch S, Petermann M, Suazo M, Ugarte G, and Bunout D. Changes in microsomal activity in alcoholism and obesity. Alcohol Clin Exp Res 24:605–610 (2000).

    PubMed  Google Scholar 

  120. Scavone JM, Greenblatt DJ, Harmatz JS, and Shader RI. Kinetic and dynamic interaction of brotizolam and ethanol. Br J Clin Pharmacol 21:197–204 (1986).

    CAS  PubMed  Google Scholar 

  121. Linnoila M, Otterstrom S, and Antilla M. Serum chlordiazepoxide, diazepam and thioridazine concentrations after the simultaneous ingestion of alcohol or placebo drink. Ann Clin Res 6:4–6 (1974).

    CAS  PubMed  Google Scholar 

  122. Dorian P, Sellers EM, Kaplan HL, Hamilton C, Greenblatt DJ, and Abernethy D. Triazolam and ethanol interaction: kinetic and dynamic consequences. Clin Pharmacol Ther 37: 558–562 (1985).

    CAS  PubMed  Google Scholar 

  123. Ochs HR, Greenblatt DJ, Verburg-Ochs B, Harmatz JS, and Grehl H. Disposition of clotiazepam: influence of age, sex, oral contraceptives, cimetidine, isoniazid and ethanol. Eur J Clin Pharmacol 26:55–59 (1984).

    CAS  PubMed  Google Scholar 

  124. Linnoila M, Erwin CW, Brendle A, and Loque P. Effects of alcohol and flunitrazepam on mood and performance in healthy young men. J Clin Pharmacol 21:430–435 (1981).

    CAS  PubMed  Google Scholar 

  125. Girre C, Hirschhorn M, Bertaux L, Palombo S, and Fournier PE. Comparison of performance of healthy volunteers given prazepam alone or combined with ethanol. Relation to drug plasma concentrations. Int Clin Psychopharmacol 6:227–238 (1991).

    CAS  PubMed  Google Scholar 

  126. Hayes SL, Pablo G, Radomoki T, and Palmer RG. Ethanol and oral diazepam absorption. N Engl J Med 296:186–189 (1977).

    CAS  PubMed  Google Scholar 

  127. Laisi U, Linnoila M, Seppala T, Himberg J-J, and Mattila MJ. Pharmacokinetic and pharmacodynamic interactions of diazepam with different alcoholic beverages. Eur J Clin Pharmacol 16:263–270 (1979).

    CAS  Google Scholar 

  128. Sellers EM, Naranjo CA, Giles HG, Frecker RC, and Beeching M. Intravenous diazepam and oral ethanol interaction. Clin Pharmacol Ther 28:638–645 (1980).

    CAS  PubMed  Google Scholar 

  129. Morland J, Setekleiv J, Haffner JFW, Stromsaether CE, Danielsen A, and Wethe GH. Combined effects of diazepam and ethanol on mental and psychomotor functions. Acta Pharmacol Toxicol 34:5–15 (1974).

    CAS  Google Scholar 

  130. Greenblatt DJ, Shader RI, Weinberger DR, Allen MD, and MacLaughlin DS. Effect of a cocktail on diazepam absorption. Psychopharmacology 57:199–203 (1978).

    CAS  PubMed  Google Scholar 

  131. Divoll M and Greenblatt DJ. Alcohol does not enhance diazepam absorption. Pharmacology 22:263–268 (1981).

    CAS  PubMed  Google Scholar 

  132. Busby WF, Ackermann JM, and Crespi CL. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos 27:246–249 (1999).

    CAS  PubMed  Google Scholar 

  133. Perry PJ, Wilding DC, Fowler RC, Helper CD, and Caputo JF. Absorption of oral and intramuscular chlordiazepoxide by alcoholics. Clin Pharmacol Ther 23:535–541 (1978).

    CAS  PubMed  Google Scholar 

  134. Sellers EM, Greenblatt DJ, Zilm DH, and Degani N. Decline in chlordiazepoxide plasma levels during fixed-dose therapy of alcohol withdrawal. Br J Clin Pharmacol 6:370–372 (1978).

    CAS  PubMed  Google Scholar 

  135. Sellman R, Pekkarinen A, Kangas L, and Raijola E. Reduced concentrations of plasma diazepam in chronic alcoholic patients following an oral administration of diazepam. Acta Pharmacol Toxicol 36:25–32 (1975).

    CAS  Google Scholar 

  136. Sellman R, Kanto J, Raijola E, and Pekkarinen A. Human and animal study on elimination from plasma and metabolism of diazepam after chronic alcohol intake. Acta Pharmacol Toxicol 36:33–38 (1975).

    CAS  Google Scholar 

  137. Pond SM, Phillips M, Benowitz NL, Galinsky RE, Tong TG, and Becker CE. Diazepam kinetics in acute alcohol withdrawal. Clin Pharmacol Ther 25:832–836 (1979).

    CAS  PubMed  Google Scholar 

  138. Kostrubsky VE, Strom SC, Wood SG, Wrighton SA, Sinclair PR, and Sinclair JF. Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys 322:516–520 (1995).

    CAS  PubMed  Google Scholar 

  139. Nair SG, Gamble JAS, Dundee JW, and Howard PJ. The influence of three antacids in the absorption and clinical action of oral diazepam. Br J Anaesth 48:1175–1180 (1976).

    CAS  PubMed  Google Scholar 

  140. Elliot P, Dundee JW, Elwood RJ, and Collier PS. The influence of H2 receptor antagonists on the plasma concentration of midazolam and temazepam. Eur J Anesth 1:245–251 (1984).

    Google Scholar 

  141. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, and Koch-Weser J. Influence of magnesium and aluminum hydroxide mixture on chlordiazepoxide absorption. Clin Pharmacol Ther 19:234–239 (1976).

    CAS  PubMed  Google Scholar 

  142. Chun AHC, Carrigan PJ, Hoffman DJ, Kershner RP, and Stuart JD. Effect of antacids on absorption of clorazepate. Clin Pharmacol Ther 22:329–335 (1977).

    CAS  PubMed  Google Scholar 

  143. Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, and Allen MD. Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide. Clin Pharmacol Ther 24:308–315 (1978).

    CAS  PubMed  Google Scholar 

  144. Greenblatt DJ, Allen MD, MacLaughlin DS, Harmatz JS, and Shader RI. Diazepam absorption: effect of antacids and food. Clin Pharmacol Ther 24:600–609 (1978).

    CAS  PubMed  Google Scholar 

  145. Abruzzo CW, Macasieb T, Weinfeld R, Rider AJ, and Kaplan SA. Changes in the oral absorption characteristics in man of dipotassium clorazepate at normal and elevated gastric pH. J Pharmacokinet Biopharm 5:377–390 (1977).

    CAS  PubMed  Google Scholar 

  146. Shader RI, Ciraulo DA, Greenblatt DJ, and Harmatz JS. Steady-state plasma desmethyl-diazepam during long-term clorazepate use: effect of antacids. Clin Pharmacol Ther 31: 180–183 (1982).

    CAS  PubMed  Google Scholar 

  147. Kroboth PD, Smith RB, Rault R, Silver MR, Sorkin MI, Puschett JB, and Juhl RP. Effects of end-stage renal disease and aluminum hydroxide on temazepam kinetics. Clin Pharmacol Ther 37:453–459 (1985).

    CAS  PubMed  Google Scholar 

  148. Kroboth PD, Smith RB, Silver MR, Rault R, Sorkin MI, Puschett JB, and Juhl RP. Effects of end stage renal disease and aluminium hydroxide on triazolam pharmacokinetics. Br J Clin Pharmacol 19:839–842 (1985).

    CAS  PubMed  Google Scholar 

  149. Lima DR, Santos RM, Werneck E, and Andrade GN. Effect of orally administered misoprostol and cimetidine on the steady state pharmacokinetics of diazepam and nordiazepam in human volunteers. Eur J Drug Metab Pharmacokinet 16:161–170 (1991).

    CAS  PubMed  Google Scholar 

  150. Bateman DN. The action of cispride on gastric emptying and the pharmacodynamics and pharmacokinetics of diazepam. Eur J Clin Pharmacol 30:205–208 (1986).

    CAS  PubMed  Google Scholar 

  151. Dal Negro R. Pharmacokinetic drug interactions with anti-ulcer drugs. Clin Pharmacokinet 35:135–150 (1998).

    CAS  PubMed  Google Scholar 

  152. Flockhart DA, Desta Z, and Mahal SK. Selection of drugs to treat gastro-oesophageal reflux disease—the role of drug interactions. Clin Pharmacokinet 39:295–309 (2000).

    CAS  PubMed  Google Scholar 

  153. Knodell RG, Browne DG, Gwozdz GP, Brian WR, and Guengerich FP. Differential inhibition of individual human liver cytochromes P-450 by cimetidine. Gastroenterology 101: 1680–1691 (1991).

    CAS  PubMed  Google Scholar 

  154. Martinez C, Albet C, Agundez JAG, Herrero E, Carrillo JA, et al. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther 65:369–376 (1999).

    CAS  PubMed  Google Scholar 

  155. Klotz U, Arvela P, Pasanen, Kroemer H, and Pelkonen O. Comparative effects of H2-receptor antagonists on drug metabolism in vitro and in vivo. Pharmacol Ther 33:157–161 (1987).

    CAS  PubMed  Google Scholar 

  156. Hulhoven R, Desager JP, Cox S, and Harvengt C. Influence of repeated administration of cimetidine on the pharmacokinetics and pharmacodynamics of adinazolam in healthy subjects. Eur J Clin Pharmacol 35:59–64 (1988).

    CAS  PubMed  Google Scholar 

  157. Abernethy DR, Greenblatt DJ, Divoll M, Moschitto LJ, Harmatz JS, and Shader RI. Interaction of cimetidine with triazolobenzodiazepines alprazolam and triazolam. Psychopharmacology 80:275–278 (1983).

    CAS  PubMed  Google Scholar 

  158. Pourbaix S, Desager JP, Hulhoven R, Smith RB, and Harvengt C. Pharmacokinetic consequences of long term coadministration of cimetidine and triazolobenzodiazepines, alprazolam and triazolam, in healthy subjects. Int J Clin Pharmacol Ther Toxicol 23:447–451 (1985).

    CAS  PubMed  Google Scholar 

  159. Ochs HR, Greenblatt DJ, Friedman H, Burstein ES, Locniskar A, Harmatz JS, and Shader RI. Bromazepam pharmacokinetics: influence of age, gender, oral contraceptives, cimetidine and propranolol. Clin Pharmacol Ther 41:562–570 (1987).

    CAS  PubMed  Google Scholar 

  160. Desmond PV, Patwardhan RV, Schenker S, and Speeg KV. Cimetidine impairs elimination of chlordiazepoxide (Librium) in man. Ann Intern Med 93:266–268 (1980).

    CAS  PubMed  Google Scholar 

  161. Pullar T, Edwards D, Haigh JRM, Peaker S, and Feely MP. The effect of cimetidine on the single dose pharmacokinetics of oral clobazam and N-desmethylclobazam. Br J Clin Pharmacol 23:317–321 (1987).

    CAS  PubMed  Google Scholar 

  162. Divoll M, Greenblatt DJ, Abernethy DR, and Shader RI. Cimetidine impairs clearance of antipyrine and desmethyldiazepam in the elderly. J Am Geriatr Soc 30:684–689 (1982).

    CAS  PubMed  Google Scholar 

  163. Klotz U and Reimann I. Delayed clearance of diazepam due to cimetidine. N Engl J Med 302:1012–1014 (1980).

    CAS  PubMed  Google Scholar 

  164. Klotz U and Reimann I. Elevation of steady-state diazepam levels by cimetidine. Clin Pharmacol Ther 30:513–517 (1981).

    CAS  PubMed  Google Scholar 

  165. Gough PA, Curry SH, Araujo 0E, Robinson JD, and Dallman JJ. Influence of cimetidine on oral diazepam elimination with measurement of subsequent cognitive change. Br J Clin Pharmacol 14:739–742 (1982).

    CAS  PubMed  Google Scholar 

  166. Abernethy DR, Greenblatt DJ, Divoll M, Ameer B, and Shader RI. Differential effect of cimetidine on drug oxidation (antipyrine and diazepam) vs. conjugation (acetaminophen and lorazepam): prevention of acetaminophen toxicity by cimetidine. J Pharmacol Exp Ther 224:508–513 (1983).

    CAS  PubMed  Google Scholar 

  167. Greenblatt DJ, Abernethy DR, Morse DS, Harmatz JS, and Shader RI. Clinical importance of the interaction of diazepam and cimetidine. N Engl J Med 310:1639–1643 (1984).

    CAS  PubMed  Google Scholar 

  168. Andersson T, Andren K, Cederberg C, Edvardsson G, Heggelund A, and Lundborg P. Effect of omeprazole and cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 39: 51–54 (1990).

    CAS  PubMed  Google Scholar 

  169. Greenblatt DJ, Abernethy DR, Koepke HH, and Shader RI. Interaction of cimetidine with oxazepam, lorazepam, and flurazepam. J Clin Pharmacol 24:187–193 (1984).

    CAS  PubMed  Google Scholar 

  170. Fee JPH, Collier PS, Howard PJ, and Dundee JW. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 41:80–84 (1987).

    CAS  PubMed  Google Scholar 

  171. Ochs HR, Greenblatt DJ, Gugler R, Muntefering G, Locniskar A, and Abernethy DR. Cimetidine impairs nitrazepam clearance. Clin Pharmacol Ther 34:227–230 (1983).

    CAS  PubMed  Google Scholar 

  172. Klotz U and Reimann I. Influence of cimetidine on the pharmacokinetics of desmethyldiazepam and oxazepam. Eur J Clin Pharmacol 18:517–520 (1980).

    CAS  PubMed  Google Scholar 

  173. Cox SR, Kroboth PD, Anderson PH, and Smith RB. Mechanism for the interaction between triazolam and cimetidine. Biopharm Drug Dispos 7:567–575 (1986).

    CAS  PubMed  Google Scholar 

  174. McGowan WAW and Dundee JW. The effect of intravenous cimetidine on the absorption of orally administered diazepam and lorazepam. Br J Clin Pharmacol 14:201–211 (1982).

    Google Scholar 

  175. Klotz U, Arvela P, and Rosenkranz B. Effect of single doses of cimetidine and ranitidine on the steady-state plasma levels of midazolam. Clin Pharmacol Ther 38:652–655 (1985).

    CAS  PubMed  Google Scholar 

  176. Salonen M, Aantaa E, Aaltonen L, and Kanto J. Importance of the interaction of midazolam and cimetidine. Acta Pharmacol Toxicol 58:91–95 (1986).

    CAS  Google Scholar 

  177. Patwardhan RV, Yarborough GW, Desmond PV, Johnson RF, Schenker S, and Speeg KV Jr. Cimetidine spares the glucuronidation of lorazepam and oxazepam. Gastroenterology 79:912–916 (1980).

    CAS  PubMed  Google Scholar 

  178. Greenblatt DJ, Abernethy DR, Divoll M, Locniskar A, Harmatz JS, and Shader RI. Noninteraction of temazepam and cimetidine. J Pharm Sci 73:399–401 (1984).

    CAS  PubMed  Google Scholar 

  179. Klotz U, Reimann IW, and Ohnhaus EE. Effect of ranitidine on the steady state pharmacokinetics of diazepam. Eur J Clin Pharmacol 24:357–360 (1983).

    CAS  PubMed  Google Scholar 

  180. Elwood RJ, Hildebrand PJ, Dundee JW, and Collier PS. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 15:743–745 (1983).

    CAS  PubMed  Google Scholar 

  181. Vanderveen RP, Jirak JL, Peters GR, Cox SR, and Bombardt PA. Effect of rantidine on the disposition of orally and intravenously administered triazolam. Clin Pharmacy 10:539–543 (1991).

    CAS  Google Scholar 

  182. Abernethy DR, Greenblatt DJ, Eshelman FN, and Shader RI. Ranitidine does not impair oxidative or conjugative drug metabolism: noninteraction with antipyrine, diazepam, and lorazepam. Clin Pharmacol Ther 35:188–192 (1984).

    CAS  PubMed  Google Scholar 

  183. Klotz U, Gottlieb W, Keohane PP, and Dammann HG. Nocturnal doses of ranitidine and nizatidine do not affect the disposition of diazepam. J Clin Pharmacol 27:210–212 (1987).

    CAS  PubMed  Google Scholar 

  184. Suttle AB, Songer SS, Dukes GE, Hak LJ, Koruda M, Fleishaker JC, and Brouwer KLR. Ranitidine does not alter adinazolam pharmacokinetics or pharmacodynamics. J Clin Psychopharmacol 12:282–287 (1992).

    CAS  PubMed  Google Scholar 

  185. Klotz U, Arvela P, and Rosenkranz B. Famotidine, a new H2-receptor antagonist, does not affect hepatic elimination of diazepam or tubular secretion of procainamide. Eur J Clin Pharmacol 28:671–675 (1985).

    CAS  PubMed  Google Scholar 

  186. Locniskar A, Greenblatt DJ, Harmatz JS, Zinny MA, and Shader RI. Interaction of diazepam with famotidine and cimetidine, two H2-receptor antagonists. J Clin Pharmacol 26: 299–303 (1986).

    CAS  PubMed  Google Scholar 

  187. VandenBranden M, Ring BJ, Binkley SN, and Wrighton SA. Interaction of human liver cytochromes P450 in vitro with LY307640, a gastric proton pump inhibitor. Pharmacogenetics 6:81–91 (1996).

    CAS  PubMed  Google Scholar 

  188. Ko J-W, Sukhova N, Thacker D, Chen P, and Flockhart DA. Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 25:853–862 (1997).

    CAS  PubMed  Google Scholar 

  189. Tucker GT. The interaction of proton pump inhibitors with cytochromes P450. Aliment Pharmacol Ther 8(Suppl 1):33–38 (1994).

    CAS  PubMed  Google Scholar 

  190. Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors: focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet 31:9–28 (1996).

    CAS  PubMed  Google Scholar 

  191. Gugler R and Jensen JC. Omeprazole inhibits oxidative drug metabolism. Gastroenterology 89:1235–1241 (1985).

    CAS  PubMed  Google Scholar 

  192. Andersson T, Cederberg C, Edvardsson G, Heggelund A, and Lundborg P. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 47:79–85 (1990).

    CAS  PubMed  Google Scholar 

  193. Caraco Y, Tateishi T, and Wood AJJ. Interethnic difference in omeprazole’s inhibition of diazepam metabolism. Clin Pharmacol Ther 58:62–72 (1995).

    CAS  PubMed  Google Scholar 

  194. Lefebvre RA, Flouvat B, Karola-Tamisier S, Moerman E, and Van Ganse E. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther 52:458–463 (1992).

    CAS  PubMed  Google Scholar 

  195. Gugler R, Hartmann M, Rudi J, Brod I, Huber R, Steinijans VW, et al. Lack of pharmacokinetic interaction of pantoprazole with diazepam in man. Br J Clin Pharmacol 42:249–252 (1996).

    CAS  PubMed  Google Scholar 

  196. Venkatakrishnan K, von Moltke LL, and Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism—clinical relevance. Clin Pharmacokinet 38:111–180 (2000).

    CAS  PubMed  Google Scholar 

  197. Maurice M, Pichard L, Daujat M, Fabre I, Joyeux H, Domergue J, and Maurel P. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 6:752–758 (1992).

    CAS  PubMed  Google Scholar 

  198. von Moltke LL, Greenblatt DJ, Duan SX, Harmatz JS, and Shader RI. Inhibition of triazolam hydroxylation by ketoconazole, itraconazole, hydroxyitraconazole and fluconazole in vitro. Pharm Pharmacol Commun 4:443–445 (1998).

    Google Scholar 

  199. Jurima-Romet M, Crawford K, Cyr T, and Inaba T. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 22:849–857 (1994).

    CAS  PubMed  Google Scholar 

  200. Back DJ, Tjia JF, Karbwang J, and Colbert J. In vitro inhibition studies of tolbutamide hydroxylase activity of human liver microsomes by azoles, sulphonamides and quinilines. Br J Clin Pharmacol 26:23–29 (1988).

    CAS  PubMed  Google Scholar 

  201. Tassaneeyakul W, Birkett DJ, and Miners JO. Inhibition of human hepatic cytochrome P4502E1 by azole antifungals, CNS-active drugs and non-steroidal anti-inflammatory agents. Xenobiotica 28:293–301 (1998).

    CAS  PubMed  Google Scholar 

  202. Greenblatt DJ, Wright CE, von Moltke LL, Harmatz JS, Ehrenberg BL, Harrel LM, et al. Ketoconazole inhibition of triazolam amd alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 64:237–247 (1998).

    CAS  PubMed  Google Scholar 

  203. Schmider J, Brockmoller J, Arold G, Bauer S, and Roots I. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 9:725–734 (1999).

    CAS  PubMed  Google Scholar 

  204. Brown MW, Maldonado AL, Meredith CG, and Speeg KV. Effect of ketoconazole on hepatic oxidative metabolism. Clin Pharmacol Ther 37:290–297 (1985).

    CAS  PubMed  Google Scholar 

  205. Olkkola KT, Backman JT, and Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55: 481–485 (1994).

    CAS  PubMed  Google Scholar 

  206. Varhe A, Olkkola KT, and Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 56: 601–607 (1994).

    CAS  PubMed  Google Scholar 

  207. von Moltke LL, Greenblatt DJ, Harmatz JS, Duan SX, Harrel LM, Cotreau-Bibbo MM, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 276:370–379 (1996).

    Google Scholar 

  208. Olkkola KT, Ahonen J, and Neuvonen PJ. The effect of systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analges 82:511–516 (1996).

    CAS  Google Scholar 

  209. Ahonen J, Olkkola KT, and Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 51:415–419 (1997).

    CAS  PubMed  Google Scholar 

  210. Varhe A, Olkkola KT, and Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 42:465–470 (1996).

    CAS  PubMed  Google Scholar 

  211. Ohtani Y, Kotegawa T, Tsutsumi K, Morimoto T, Hirose Y, and Nakano S. Effect of fluconazole on the pharmacokinetics and pharmacodynamics of oral and rectal bromazepam: an application of electroencephalography as the pharmacodynamic method. J Clin Pharmacol 42:183–191 (2002).

    CAS  PubMed  Google Scholar 

  212. Yasui N, Kondo T, Otani K, Furukori H, Kaneko S, Ohkubo T, Nagasaki T, and Sugawara K. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology 139:269–273 (1998).

    CAS  PubMed  Google Scholar 

  213. Ahonen J, Olkkola KT, and Neuvonen PJ. The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fund Clin Pharmacol 10:314–318 (1996).

    CAS  Google Scholar 

  214. Ahonen J, Olkkola KT, and Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 40:270–272 (1995).

    CAS  PubMed  Google Scholar 

  215. Neuvonen PJ, Varhe A, and Olkkola KT. The effect of ingestion time interval on the interaction betwen itraconazole and triazolam. Clin Pharmacol Ther 60:326–331 (1996).

    CAS  PubMed  Google Scholar 

  216. Blyden GT, Scavone JM, and Greenblatt DJ. Metronidazole impairs clearance of phenytoin but not of alprazolam or lorazepam. J Clin Pharmacol 28:240–245 (1988).

    CAS  PubMed  Google Scholar 

  217. Jensen JC and Gugler R. Interaction between metronidazole and drugs eliminated by oxidative metabolism. Clin Pharmacol Ther 37:407–410 (1985).

    CAS  PubMed  Google Scholar 

  218. Wang JS, Backman JT, Kivisto KT, and Neuvonen PJ. Effects of metronidazole on midazolam metabolism in vitro and in vivo. Eur J Clin Pharmacol 56:555–559 (2000).

    CAS  PubMed  Google Scholar 

  219. Varhe A, Olkkola KT, and Neuvonen PJ. Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 41:319–323 (1996).

    CAS  PubMed  Google Scholar 

  220. Crewe HK, Lennard MS, Tucker GT, Woods FR, and Haddock RE. The effect of selective serotonin re-uptake inhibitors on Cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265 (1992).

    CAS  PubMed  Google Scholar 

  221. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, and Sellers EM. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 41:149–156 (1996).

    CAS  PubMed  Google Scholar 

  222. Schmider J, Greenblatt DJ, von Moltke LL, Harmatz JS, and Shader RI. Inhibition of cytochrome P450 by nefazodone in vitro: studies of dextromethorphan O- and N-demethylation. Br J Clin Pharmacol 41:339–343 (1996).

    CAS  PubMed  Google Scholar 

  223. Brosen K and Naranjo CA. Review of the pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 11:275–283 (2001).

    CAS  PubMed  Google Scholar 

  224. Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, and Shader RI. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol 44:495–498 (1997).

    CAS  PubMed  Google Scholar 

  225. Lasher TA, Fleishaker JC, Steenwyk RC, and Antal EJ. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 104:323–327 (1991).

    CAS  PubMed  Google Scholar 

  226. Greenblatt DJ, Preskorn SH, Cotreau MM, Horst WD, and Harmatz JS. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 52:479–486 (1992).

    CAS  PubMed  Google Scholar 

  227. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, and Bergstrom RF. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 43:412–419 (1988).

    CAS  PubMed  Google Scholar 

  228. Wright CE, Lasher-Sisson TA, Steenwyk RC, and Swanson CN. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 12: 103–106 (1992).

    CAS  PubMed  Google Scholar 

  229. Perucca E, Gatti G, Cipolla G, Spina E, Barel S, Soback S, et al. Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther 56:471–476 (1994).

    CAS  PubMed  Google Scholar 

  230. Kashuba ADM, Nafziger AN, Kearns GL, Leeder JS, Gotschall R, Rocci ML, et al. Effect of fluvoxamine therapy on the activities of CYP1A2, CYP2D6, and CYP3A as determined by phenotyping. Clin Pharmacol Ther 64:257–268 (1998).

    CAS  PubMed  Google Scholar 

  231. Kroboth PD, Folan MM, Lush RM, Chaikin PC, Shukla UA, Barbhaiya R, and Salazar DE. Coadministration of nefazodone and benzodiazepines: I. Pharmacodynamic assessment. J Clin Psychopharmacol 15:306–319 (1995).

    CAS  PubMed  Google Scholar 

  232. Greene DS, Salazar DE, Dockens RC, Kroboth PD, and Barbhaiya RH. Coadministration of nefazodone and benzodiazepines: III. A pharmacokinetic interaction study with alprazolam. J Clin Psychopharmacol 15:399–408 (1995).

    CAS  PubMed  Google Scholar 

  233. Barbhaiya RM, Shukla UA, Kroboth PD, and Greene DS. Coadministration of nefazodone and benzodiazepines: II. A pharmacokinetic interaction study with triazolam. J Clin Psychopharmacol 15:320–326 (1995).

    CAS  PubMed  Google Scholar 

  234. Greene DS, Salazar DE, Dockens RC, Kroboth PD, and Barbhaiya RH. Coadministration of nefazodone and benzodiazepines: IV. A pharmacokinetic interaction study with lorazepam. J Clin Psychopharmacol 15:409–416 (1995).

    CAS  PubMed  Google Scholar 

  235. Bonate PL, Kroboth PD, Smith RB, Suarez E, and Oo C. Clonazepam and sertraline: absence of drug interaction in a multiple-dose study. J Clin Psychopharmacol 20:19–27 (2000).

    CAS  PubMed  Google Scholar 

  236. Gardner MJ, Baris BA, Wilner KD, and Preskorn SH. Effect of sertraline on the pharmacokinetics and protein binding of diazepam in healthy volunteers. Clin Pharmacokinet 32 (Suppl 1):43–49 (1997).

    CAS  PubMed  Google Scholar 

  237. Amchin J, Zarycranski W, Taylor KP, Albano D, and Klockowski PM. Effect of venlafaxine on the pharmacokinetics of alprazolam. Psychopharmacology Bull 34:211–219 (1998).

    CAS  Google Scholar 

  238. Troy SM, Lucki I, Peirgies AA, Parker VD, Klockowski PM, and Chiang ST. Pharmacokinetic and pharmacodynamic evaluation of the potential drug interaction between venlafaxine and diazepam. J Clin Pharmacol 35:410–419 (1995).

    CAS  PubMed  Google Scholar 

  239. Shenfield GM and Griffin JM. Clinical pharmacokinetics of contraceptive steroids: an update. Clin Pharmacokinet 20:15–37 (1991).

    CAS  PubMed  Google Scholar 

  240. Guengerich FP. Oxidation of 17a-ethynylestradiol by human liver cytochrome P-450. Mol Pharmacol 33:500–508 (1988).

    CAS  PubMed  Google Scholar 

  241. Back DJ, Houlgrave R, Tjia JF, Ward S, and Orme MLE. Effect of the progestogens, gestodene, 3-keto desogestral, levonorgestrel, norethisterone and norgestimate on the oxidation of ethyloestradiol and other substrates by human liver microsomes. J Ster Biochem Mol Biol 38:219–225 (1991).

    CAS  Google Scholar 

  242. Stoehr GP, Kroboth PD, Juhl RP, Wender DB, Phillips JP, and Smith RB. Effect of oral contraceptives on triazolam, temazepam, alprazolam, and lorazepam kinetics. Clin Pharmacol Ther 36:683–690 (1984).

    CAS  PubMed  Google Scholar 

  243. Roberts RK, Desmond PV, Wilkinson GR, and Schenker S. Disposition of chlordiazepoxide: sex differences and effects of oral contraceptives. Clin Pharmacol Ther 25:826–831 (1979).

    CAS  PubMed  Google Scholar 

  244. Patwardhan RV, Mitchell MC, Johnson RF, and Schenker S. Differential effects of oral contraceptive steroids on the metabolism of benzodiazepines. Hepatology 3:248–253 (1983).

    CAS  PubMed  Google Scholar 

  245. Giles HG, Sellers EM, Naranjo CA, Frecker RC, and Greenblatt DJ. Disposition of intravenous diazepam in young men and women. Eur J Clin Pharmacol 20:207–213 (1981).

    CAS  PubMed  Google Scholar 

  246. Abernethy DR, Greenblatt DJ, Divoll M, Arendt R, Ochs HR, and Shader RI. Impairment of diazepam metabolism by low-dose estrogen containing oral contraceptive steroids. N Engl J Med 306:791–792 (1982).

    CAS  PubMed  Google Scholar 

  247. Palovaara S, Kivisto KT, Tapanainen P, Manninen P, Neuvonen PJ, and Laine K. Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Brit J Clin Pharmacol 50:333–337 (2000).

    CAS  Google Scholar 

  248. Jochemsen R, Van der Graaff M, Boeijinga JK, and Breimer DD. Influence of sex, menstrual cycle and oral contraception on the disposition of nitrazepam. Br J Clin Pharmacol 13:319–324 (1982).

    CAS  PubMed  Google Scholar 

  249. Scavone JM, Greenblatt DJ, Locniskar A, and Shader RI. Alprazolam pharmacokinetics in women on low-dose oral contraceptives. J Clin Pharmacol 28:454–457 (1988).

    CAS  PubMed  Google Scholar 

  250. Holazo AA, Winkler MB, and Patel IH. Effects of age, gender and oral contraceptives on intramuscular midazolam pharmacokinetics. J Clin Pharmacol 28:1040–1045 (1988).

    CAS  PubMed  Google Scholar 

  251. Belle DJ, Callaghan JT, Gorski JC, Maya JF, Mousa O, Wrighton SA, and Hall SD. The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 53:67–74 (2002).

    CAS  PubMed  Google Scholar 

  252. Abernethy DR, Greenblatt DJ, Ochs HR, Weyers D, Divoll M, Harmatz JS, and Shader RI. Lorazepam and oxazepam kinetics in women on low-dose oral contraceptives. Clin Pharmacol Ther 33:628–632 (1983).

    CAS  PubMed  Google Scholar 

  253. Gorski JC, Wang ZQ, Heahner-Daniels BD, Wrighton SA, and Hall SD. The effect of hormone replacement therapy on CYP3A activity. Clin Pharmacol Ther 68:412–417 (2000).

    CAS  PubMed  Google Scholar 

  254. Kroboth PD, Smith RB, Stoehr GP, and Juhl RP. Pharmacodynamic evaluation of the benzodiazepine-oral contraceptive interaction. Clin Pharmacol Ther 38:525–532 (1985).

    CAS  PubMed  Google Scholar 

  255. Kroboth PD and McAuley JW. Progesterone: does it affect response to drug. Psychopharmacology Bull 33:297–301 (1997).

    CAS  Google Scholar 

  256. Pichard L, Fabre I, Domergue J, Saint Aubert B, Mourad G, and Maurel P. Cyclosporin A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 18:595–606 (1990).

    CAS  PubMed  Google Scholar 

  257. Jawad S and Richens A. Single dose pharmacokinetic study of clobazam in normal volunteers and epileptic patients. Br J Clin Pharmacol 18:873–877 (1984).

    CAS  PubMed  Google Scholar 

  258. Dhillon S. Pharmacokinetics of diazepam in epileptic patients and normal volunteers following intravenous administration. Br J Clin Pharmacol 12:841–844 (1981).

    CAS  PubMed  Google Scholar 

  259. Backman JT, Olkkola KT, Ojala M, Laaksovirta H, and Neuvonen PJ. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 37:253–257 (1996).

    CAS  PubMed  Google Scholar 

  260. Contin M, Riva R, Albani F, and Baruzzi A. Effect of felbamate on clobazam and its metabolite kinetics in patients with epilepsy. Ther Drug Monit 21:604–608 (1999).

    CAS  PubMed  Google Scholar 

  261. Wilensky AJ, Levy RH, Troupin AS, Moretti-Ojemann L, and Friel P. Clorazepate kinetics in treated epileptics. Clin Pharmacol Ther 24:22–30 (1978).

    CAS  PubMed  Google Scholar 

  262. Furukori H, Otani K, Yasui N, Kondo T, Kaneko S, Shimoyama R, et al. Effect of carbamazepine on the single oral dose pharmacokinetics of alprazolam. Neuropsychopharmacology 18:364–369 (1998).

    CAS  PubMed  Google Scholar 

  263. Levy RH, Lane EA, Guyot M, Brachet-Liermain A, Cenraud B, and Loiseau P. Analysis of parent drug-metabolite relationship in the presence of an inducer: application to the carbamazepine-clobazam interaction in normal man. Drug Metab Dispos 11:286–292 (1983).

    CAS  PubMed  Google Scholar 

  264. Lai AA, Levy RH, and Cutler RE. Time-course of interaction between carbamazepine and clonazepam in normal man. Clin Pharmacol Ther 24:316–323 (1978).

    CAS  PubMed  Google Scholar 

  265. Arana GW, Epstein S, Molloy M, and Greenblatt DJ. Carbamazepine-induced reduction of plasma alprazolam concentrations: a clinical case report. J Clin Psychiatry 49:448–449 (1988).

    CAS  PubMed  Google Scholar 

  266. Dhillon S and Richens A. Serum protein binding of diazepam and its displacement by valproic acid in vitor. Br J Clin Pharmacol 12:591–592 (1981).

    CAS  PubMed  Google Scholar 

  267. Dhillon S and Richens A. Valproic acid and diazepam interactions in vivo. Br J Clin Pharmacol 13:553–560 (1982).

    CAS  PubMed  Google Scholar 

  268. Anderson GD, Gidal BE, Kantor ED, and Wilensky AJ. Lorazepam-valproate interaction: studies in normal subjects and in isolated perfused rat liver. Epilepsia 35:221–225 (1994).

    CAS  PubMed  Google Scholar 

  269. Samara EE, Granneman RG, Witt GF, and Cavanaugh JH. Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol 37:442–450 (1997).

    CAS  PubMed  Google Scholar 

  270. Tija JF, Back DJ, and Breckenridge AM. Calcium channel antagonists and cyclosporin metabolism: in vitro studies with human liver microsomes. Br J Clin Pharmacol 28:362–365 (1989).

    Google Scholar 

  271. Sutton D, Butler AM, Nadin L, and Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 282:294–300 (1997).

    CAS  PubMed  Google Scholar 

  272. Ma B, Prueksaritanont T, and Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 28:125–130 (2000).

    CAS  PubMed  Google Scholar 

  273. Shaw L, Lennard MS, Tucker GT, Bax NDS, and Woods HF. Irreversible binding and metabolism of propranolol by human liver microsomes—relationship to polymorphic oxidation. Biochem Pharmacol 36:2283–2288 (1987).

    CAS  PubMed  Google Scholar 

  274. Ochs HR, Greenblatt DJ, and Verburg-Ochs B. Propranolol interactions with diazepam, lorazepam, and alprazolam. Clin Pharmacol Ther 36:451–455 (1984).

    CAS  PubMed  Google Scholar 

  275. Hawksworth GM, Betts T, Crowe A, Knight R, Nyemitei-Addo I, Parry K, et al. Diazepam /β3-adrenoceptor antagonist interactions. Br J Clin Pharmacol 17:69S-76S (1984).

    PubMed  Google Scholar 

  276. Sonne J, Dossing M, Loft S, Olesen KL, Vollmer-Larsen A, Victor MA, et al. Single dose pharmacokinetics and pharmacodynamics of oral oxazepam during concomitant administration of propranolol and labetalol. Br J Clin Pharmacol 29:33–37 (1990).

    CAS  PubMed  Google Scholar 

  277. Scott AK, Cameron GA, and Hawksworth GM. Interaction of metoprolol with lorazepam and bromazepam. Eur J Clin Pharmacol 40:405–409 (1991).

    CAS  PubMed  Google Scholar 

  278. Klotz U and Reimann IW. Pharmacokineitc and pharmacodynamic interaction study of diazepam and metoprolol. Eur J Clin Pharmacol 26:223–226 (1984).

    CAS  PubMed  Google Scholar 

  279. Ahonen J, Olkkola KT, Salmenpera M, Hynynen M, and Neuvonen PJ. Effect of diltiazem on midazolam and alfentanil disposition in patients undergoing coronary artery bypass grafting. Anesthesia 85:1246–1252 (1996).

    CAS  Google Scholar 

  280. Backman JT, Olkkola KT, Aranko K, Himberg J-J, and Neuvonen PJ. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 37: 221–225 (1994).

    CAS  PubMed  Google Scholar 

  281. Varhe A, Olkkola KT, and Neuvonen PJ. Diltiazem enhances the effects of triazolam by inhibiting its metabolism. Clin Pharmacol Ther 59:369–375 (1996).

    CAS  PubMed  Google Scholar 

  282. Kosuge K, Nishimoto M, Kimura M, Umemura K, Nakashima M, and Ohashi K. Enhanced effect of triazolam with diltiazem. Br J Clin Pharmacol 43:367–372 (1997).

    CAS  PubMed  Google Scholar 

  283. Backman JT, Wang J-S, Wen X, Kivisto KT, and Neuvonen PJ. Mibefradil but not isradipine substantially elevates the plasma concentrations of the CYP3A4 substrate triazolam. Clin Pharmacol Ther 66:401–407 (1999).

    CAS  PubMed  Google Scholar 

  284. Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 22:47–65 (1992).

    CAS  PubMed  Google Scholar 

  285. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Brit. J Clin Pharmacol 50:285–295 (2000).

    CAS  Google Scholar 

  286. Yamazaki H and Shimada T. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6β-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab Dispos 26:1053–1057 (1998).

    CAS  PubMed  Google Scholar 

  287. Zhao XJ, Koyama E, and Ishizaki T. An in vitro study on the metabolism and possible drug interactions of rokitamycin, a macrolide antibiotic, using human liver microsomes. Drug Metab Dispos 27:776–785 (1999).

    CAS  PubMed  Google Scholar 

  288. Lindstrom TD, Hanssen BR, and Wrighton SA. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob Agents Chemother 37:265–269 (1993).

    CAS  PubMed  Google Scholar 

  289. Marre F, de Sousa G, Orloff AM, and Rahmani R. In vitro interaction between cyclosporin A and macrolide antibiotics. Br J Clin Pharmacol 35:447–448 (1993).

    CAS  PubMed  Google Scholar 

  290. Greenblatt DJ, von Moltke LL, Harmatz JS, Counihan M, Graf JA, Durol ALB, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 64:278–285 (1998).

    CAS  PubMed  Google Scholar 

  291. Wen X, Wang J-S, Neuvonen PJ, and Backman JT. Isoniazid is a mechanism-based inhibitor of P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol 57:799–804 (2002).

    PubMed  Google Scholar 

  292. Edwards DJ, Bowles SK, Svensson CK, and Rybak MJ. Inhibition of drug metabolism by quinolone antibiotics. Clin Pharmacokinet 15:194–204 (1988).

    CAS  PubMed  Google Scholar 

  293. Fuhr U, Wolff T, Harder S, Schymanski P, and Staib AH. Quinolone inhibition of cytochrome P-450-dependent caffeine metabolism in human liver microsomes. Drug Metab Disposit 18:1005–1010 (1990).

    CAS  Google Scholar 

  294. Sarkar M, Polk RE, Guzelian PS, Hunt C, and Karnes HT. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Antimicrob Agents Che-mother 34:594–599 (1990).

    CAS  Google Scholar 

  295. Ochs HR, Greenblatt DJ, Roberts GM, and Dengler HJ. Diazepam interaction with antituberculous drugs. Clin Pharmacol Ther 29:671–678 (1981).

    CAS  PubMed  Google Scholar 

  296. Ohnhaus EE, Brockmeyer N, Dylewicz P, and Habicht H. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 42:148–156 (1987).

    CAS  PubMed  Google Scholar 

  297. Ochs HR, Greenblatt DJ, and Knuchel M. Differential effect of isoniazid on triazolam oxidation and oxazepam conjugation. Br J Clin Pharmacol 16:743–746 (1983).

    CAS  PubMed  Google Scholar 

  298. Backman JT, Olkkola KT, and Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 59:7–13 (1996).

    CAS  PubMed  Google Scholar 

  299. Backman JT, Kivisto KT, Olkkola KT, and Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58 (1998).

    CAS  PubMed  Google Scholar 

  300. Brockmeyer NH, Mertins L, Klimek K, Goos M, and Ohnhaus EE. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 28:387–393 (1990).

    CAS  PubMed  Google Scholar 

  301. Villikka K, Kivisto KT, Backman JT, Olkkola KT, and Neuvonen PJ. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 61:8–14 (1997).

    CAS  PubMed  Google Scholar 

  302. Yasui N, Otani K, Kaneko S, Ohkubo T, Osanai T, Sugawara K, et al. A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clin Pharmacol Ther 59:514–519 (1996).

    CAS  PubMed  Google Scholar 

  303. Luurila H, Olkkola KT, and Neuvonen PJ. Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 78:117–122 (1996).

    CAS  PubMed  Google Scholar 

  304. Vanakoski J, Mattila MJ, Vainio P, Idanpaan-Heikkila JJ, and Tornwall M. 150 mg fluconazole does not substantially increase the effects of 10 mg midazolam or the plasma midazolam concentrations in healthy subjects. Int J Clin Pharmacol Ther Toxicol 33:518–523 (1995).

    CAS  Google Scholar 

  305. Olkkola KT, Aranko K, Luurila H, Hiller A, Saarnivaara L, Himberg J-J, and Neuvonen PJ. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 53:298–305 (1993).

    CAS  PubMed  Google Scholar 

  306. Zimmermann T, Yeates RA, Laufen H, Scharpf F, Leitold M, and Wildfeuer A. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arsch-Forsch Drug Metab 46:213–217 (1996).

    CAS  Google Scholar 

  307. Phillips JP, Antal EJ, and Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 6:297–299 (1986).

    CAS  PubMed  Google Scholar 

  308. Luurila H, Olkkola KT, and Neuvonen PJ. Lack of interaction of erythromycin with temazepam. Ther Drug Monit 16:548–551 (1994).

    CAS  PubMed  Google Scholar 

  309. Warot D, Bergougnan L, Lamiable D, Berlin I, Benison G, Danjou P, and Puech AJ. Troleandomycin-triazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur J Clin Pharmacol 32:389–393 (1987).

    CAS  PubMed  Google Scholar 

  310. Backman JT, Aranko K, Himberg J-J, and Olkkola KT. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 46:551–555 (1994).

    CAS  PubMed  Google Scholar 

  311. Kamali F, Thomas SHL, and Edwards C. The influence of steady-state ciprofloxacin on the pharmacokinetics and pharmacodynamics of a single dose of diazepam. Eur J Clin Pharmacol 44:365–367 (1993).

    CAS  PubMed  Google Scholar 

  312. Wijnands WJA, Trooster JFG, Teunissen PC, Cats HA, and Vree TB. Ciprofloxacin does not impair the elimination of diazepam in humans. Drug Metab Dispos 18:954–957 (1990).

    CAS  PubMed  Google Scholar 

  313. Barry M, Mulcahy F, Merry C, Gibbons S, and Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 36:289–304 (1999).

    CAS  PubMed  Google Scholar 

  314. Li XL and Chan WK. Transport, metabolism and elimination mechanisms of anti-HIV agents. Advan Drug Delivery Rev 39:81–103 (1999).

    CAS  Google Scholar 

  315. Tseng AL and Foisy MM. Significant interactions with new antiretrovirals and psychotic drugs. Ann Pharmacother 33:461–473 (1999).

    CAS  PubMed  Google Scholar 

  316. Eagling VA, Back DJ, and Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 44:190–194 (1997).

    CAS  PubMed  Google Scholar 

  317. Inaba T, Fischer NE, Riddick DS, Stewart DJ, and Hidaka T. HIV protease inhibitors, saquinavir, indinavir and ritonavir: inhibition of CYP3A4-mediated metabolism of testosterone and benzoxazinorifamycin, KRM-1648, in human liver microsomes. Toxicol Lett 93:215–219 (1997).

    CAS  PubMed  Google Scholar 

  318. Lillibridge JH, Liang BH, Kerr BM, Webber S, Quart B, Shetty BV, and Lee CA. Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 26:609–616 (1998).

    CAS  PubMed  Google Scholar 

  319. von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Duan SX, Fogelman SM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 38:106–111 (1998).

    Google Scholar 

  320. Decker CJ, Laitinen LM, Bridson GW, Raybuck SA, Tung RD, and Chaturvedi PR. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 87:803–807 (1998).

    CAS  PubMed  Google Scholar 

  321. Zalma A, von Moltke LL, Granda BW, Harmatz JS, Shader RI, and Greenblatt DJ. In vitro metabolism of trazodone by CYP3A: inhibition by ketoconazole and human immunodeficiency viral protease inhibitors. Biol Psychiat 47:655–661 (2000).

    CAS  PubMed  Google Scholar 

  322. von Moltke LL, Greenblatt DJ, Granda BW, Giancarlo GM, Duan SX, Daily JP, et al. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 41:85–91 (2001).

    Google Scholar 

  323. Greenblatt DJ, von Moltke LL, Harmatz JS, Durol ALB, Daily JP, Graf JA, et al. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acq Immune Defic Syndr 24:129–136 (2000).

    CAS  Google Scholar 

  324. Greenblatt DJ, von Moltke LL, Harmatz JS, Durol ALB, Daily JP, Graf JA, et al. Alprazolam-ritonavir interaction: implications for product labeling. Clin Pharmacol Ther 67: 335–341 (2000).

    CAS  PubMed  Google Scholar 

  325. Palkama VJ, Ahonen J, Neuvonen PJ, and Olkkola KT. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenoud midazolam. Clin Pharmacol Ther 66:33–39 (1999).

    CAS  PubMed  Google Scholar 

  326. Bailey DG, Spence JD, Munoz C, and Arnold JMO. Interaction of citrus juices with felodipine and nifedipine. Lancet 337:268–269 (1991).

    CAS  PubMed  Google Scholar 

  327. Watkins PB, Wrighton SA, Schuetz EG, Molowa DT, and Guzelian PS. Identification of glucocortisol-inducible cytochrome P-450 in the intestinal mucosa of rats and man. J Clin Invest 80:1029–1036 (1987).

    CAS  PubMed  Google Scholar 

  328. Kolars JC, Schmiedlin-Ren P, Schuetz JD, Fang C, and Watkins PB. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 90:1871–1878 (1992).

    CAS  PubMed  Google Scholar 

  329. Bailey DG, Malcolm J, Arnold O, and Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol 46:101–110 (1998).

    CAS  PubMed  Google Scholar 

  330. Greenblatt DJ, Patki KC, von Moltke LL, and Shader RI. Drug interactions with grapefruit juice: an update. J Clin Psychopharmacol 21:357–359 (2001).

    CAS  PubMed  Google Scholar 

  331. Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, et al. Grapefruit juice increases felodipine oral bioavailability in humans by decreasing intestinal CYP 3A protein expression. J Clin Invest 99:1–9 (1997).

    Google Scholar 

  332. Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, He K, Lown KS, Woster PM, et al. Mechanisms of enhanced oral availability of CYP3A substrates by grapefruit constituents: decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 25:1228–1233 (1997).

    CAS  PubMed  Google Scholar 

  333. Guengerich FP and Kim D-H. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11:2275–2279 (1990).

    CAS  PubMed  Google Scholar 

  334. Miniscalco A, Lundahl J, Regardh CG, Edgar B, and Eriksson UG. Inhibition of dihydropyridine metabolism in rat and human liver microsomes by flavonoids found in grapefruit juice. J Pharmacol Exp Ther 261:1195–1199 (1991).

    Google Scholar 

  335. Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, and Follath F. In vitro inhibition of midazolam and quinidine metabolism by flavonoids. Eur J Clin Pharmacol 48:367–371 (1995).

    CAS  PubMed  Google Scholar 

  336. Schubert W, Eriksson U, Edgar B, Cullberg G, and Hedner T. Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17 beta-estradiol. Eur J Drug Metab Pharmacokinet 20:219–224 (1995).

    CAS  PubMed  Google Scholar 

  337. Eagling VA, Profit L, and Back DJ. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol 48:543–552 (1999).

    CAS  PubMed  Google Scholar 

  338. Rashid J, McKinstry C, Renwick AG, Dirnhuber M, Waller DG, and George CF. Quercetin, an in vitro inhibitor of CYP3A, does not contribute to the interaction between nifedipine and grapefruit juice. Br J Clin Pharmacol 36:460–463 (1993).

    CAS  PubMed  Google Scholar 

  339. Bailey DG, Arnold JMO, Munoz C, and Spence JD. Grapefruit juice-felodipine interaction—mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 53:637–642 (1993).

    CAS  PubMed  Google Scholar 

  340. Edwards DJ, Bellevue FH, and Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P-450 inhibitor in grapefruit juice. Drug Metab Dispos 24:1287–1290 (1996).

    CAS  PubMed  Google Scholar 

  341. Fukuda K, Ohta T, and Yamazoe Y. Grapefruit component interacting with rat and human P450 CYP3A: possible involvement of non-flavonoid components in drug interaction. Biol Pharm Bull 20:560–564 (1997).

    CAS  PubMed  Google Scholar 

  342. Fukuda K, Ohta T, Oshima Y, Ohashi N, Yoshikawa M, and Yamazoe Y. Specific CYP3A4 inhibitors in grapefruit juice: furocoumarins dimers as components of drug interaction. Pharmacogenetics 7:391–396 (1997).

    CAS  PubMed  Google Scholar 

  343. Guo L-Q, Fukuda K, Ohta T, and Yamazoe Y. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab Dispos 28: 766–771 (2000).

    CAS  PubMed  Google Scholar 

  344. He K, Iyer KR, Hayes RN, Sinz MW, Woolf TF, and Hollenberg PF. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem Res Toxicol 11: 252–259 (1998).

    CAS  PubMed  Google Scholar 

  345. Fuhr U, Klittich K, and Staib AH. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol 35:431–436 (1993).

    CAS  PubMed  Google Scholar 

  346. Edwards DJ, Fitzsimmons ME, Schuetz EG, Yasuda K, Ducharme MP, Warbasse LH, et al. 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther 65:237–244 (1999).

    CAS  PubMed  Google Scholar 

  347. Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, and Benet LZ. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 16:478–485 (1999).

    CAS  PubMed  Google Scholar 

  348. Kuperschmidt HHT, Ha HR, Ziegler WH, Meier PJ, and Krahenbuhl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 58:20–28 (1995).

    Google Scholar 

  349. Andersen V, Pedersen N, Larsen N-E, Sonne J, and Larsen S. Intestinal first pass metabolism of midazolam in kiver cirrhosis—effect of grapefruit juice. Br J Clin Pharmacol 54: 120–124 (2002).

    CAS  PubMed  Google Scholar 

  350. Hukkinen SK, Varhe A, Olkkola KT, and Neuvonen PJ. Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice. Clin Pharmacol Ther 58: 127–131 (1995).

    CAS  PubMed  Google Scholar 

  351. Yasui N, Kondo T, Furukori H, Kaneko S, Ohkubo T, Uno T, et al. Effects of repeated ingestion of grapefruit juice on the single and multiple oral-dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology 150:185–190 (2000).

    CAS  PubMed  Google Scholar 

  352. Vanakoski J, Mattila MJ, and Seppala T. Grapefruit juice does not enhance the effects of midazolam and triazolam in man. Eur J Clin Pharmacol 50:501–508 (1996).

    CAS  PubMed  Google Scholar 

  353. Backman JT, Maenpaa J, Belle DJ, Wrighton SA, Kivisto KT, and Neuvonen PJ. Lack of correlation between in vitro and in vivo studies on the effects of tangeretin and tangerine juice on midazolam hydroxylation. Clin Pharmacol Ther 67:382–390 (2000).

    CAS  PubMed  Google Scholar 

  354. Henauer SA, Hollister LE, Gillespie HK, and Moore F. Theophylline antagonizes diazepam-induced psychomotor impairment. Eur J Clin Pharmacol 25:743–747 (1983).

    CAS  PubMed  Google Scholar 

  355. Tuncok Y, Akpinar O, Guven H, and Akkoclu A. The effects of theophylline on serum alprazolam levels. Int J Clin Pharmacol Ther 32:642–645 (1994).

    CAS  PubMed  Google Scholar 

  356. Ghoneim MM, Hinrichs JV, Chiang C-K, and Loke WH. Pharmacokinetic and pharmacodynamic interations between caffeine and diazepam. J Clin Psychopharmacol 6:75–80 (1986).

    CAS  PubMed  Google Scholar 

  357. Ohnhaus EE, Park BK, Colombo JP, and Heizmann P. The effect of enzyme induction on diazepam metabolism in man. Br J Clin Pharmacol 8:557–563 (1979).

    CAS  PubMed  Google Scholar 

  358. MacLeod SM, Sellers EM, Giles HG, Billings BJ, Martin PR, Greenblatt DJ, and Marshman JA. Interaction of disulfiram with benzodiazepines. Clin Pharmacol Ther 24:583–589 (1978).

    CAS  PubMed  Google Scholar 

  359. Diquet B, Gujadhur L, Lamiable D, Warot D, Hayoun H, and Choisy H. Lack of interaction between disulfiram and alprazolam. Eur J Clin Pharmacol 38:157–160 (1990).

    CAS  PubMed  Google Scholar 

  360. Nakajima M, Suzuki T, Sasaki T, Yokoi T, Hosoyamada A, Yamamoto T, and Kuroiwa Y. Effects of chronic administration of glucocorticoid on midazolam pharmacokinetics in humans. Ther Drug Monit 21:507–513 (1999).

    CAS  PubMed  Google Scholar 

  361. Villikka K, Kivisto KT, and Neuvonen PJ. The effect of dexamethasone on the pharmacokinetics of triazolam. Pharmacol Toxicol 83:135–138 (1998).

    CAS  PubMed  Google Scholar 

  362. Mulley BA, Potter BI, Rye RM, and Takeshita K. Interactions between diazepam and paracetamol. J Clin Pharmacy 3:25–35 (1978).

    CAS  Google Scholar 

  363. Abernethy DR, Greenblatt DJ, Ameer B, and Shader RI. Probenecid impairment of acetaminophen and lorazepam clearance: direct inhibition of ether glucuronide formation. J Pharmacol Exp Ther 234:345–349 (1985).

    CAS  PubMed  Google Scholar 

  364. Golden PL, Warner PE, Fleishaker JC, Jewell RC, Millikin S, Lyon J, and Brouwer KLR. Effects of probenecid on the pharmacokinetics and pharmacodynamics of adinazolam in humans. Clin Pharmacol Ther 56:133–141 (1994).

    CAS  PubMed  Google Scholar 

  365. Robertson P, Decory HH, Madan A, and Parkinson A. In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos 28:664–671 (2000).

    CAS  PubMed  Google Scholar 

  366. Robertson P, Hellriegel ET, Arora S, and Nelson M. Effect of modafinal on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther 71: 46–56 (2002).

    CAS  PubMed  Google Scholar 

  367. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, and Ang CYW. Cytochrome P450 phenotype ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther 72:276–287 (2002).

    CAS  PubMed  Google Scholar 

  368. Klee H, Faugier J, Hayes C, Boulton T, and Morris J. AIDS-related risk behavior, polydrug use and temazepam. Br J Addict 85:1125–1132 (1990).

    CAS  PubMed  Google Scholar 

  369. Navaratnam V and Foong K. Adjunctive drug use among opiate addicts. Curr Med Res Opin 11:611–619 (1990).

    CAS  PubMed  Google Scholar 

  370. Metzger D, Woody G, De Philippis D, McLellan AT, O’Brien CP, and Platt JJ. Risk factors for needle sharing among methadone-treated patients. Am J Psychiatry 148:636–640 (1991).

    CAS  PubMed  Google Scholar 

  371. Darke S, Hall W, Ross M, and Wodak A. Benzodiazepine use and HIV risk-taking behaviour among injecting drug users. Drug Alcohol Depend 31:31–36 (1992).

    CAS  PubMed  Google Scholar 

  372. Barnas C, Rossmann M, Roessler H, Riemer Y, and Fleishchhacker WW. Benzodiazepines and other psychotropic drugs abused by patients in a methadone maintenance program: familiarity and preferance. J Clin Psychopharmacol 12:397–402 (1992).

    CAS  PubMed  Google Scholar 

  373. Hall W, Bell J, and Carless J. Crime and drug use among applicants for methadone maintenance. Drug Alcohol Depend 31:123–129 (1993).

    CAS  PubMed  Google Scholar 

  374. San L, Tato J, Torrens M, Castillo C, Fane M, and Cami J. Flunitrazepam consumption among heroin addicts admitted for in-patient detoxification. Drug Alcohol Depend 32: 281–286 (1993).

    CAS  PubMed  Google Scholar 

  375. Darke S, Swift W, Hall W, and Ross M. Drug use, HIV risk-taking and psychosocial correlates of benzodiazepine use among methadone maintenance clients. Drug Alcohol Depend 34:67–70 (1993).

    Google Scholar 

  376. Strang J, Griffiths P, Abbey J, and Gossop M. Survey of injected benzodiazepines among drug users in Britain. BMJ 308:1082 (1994).

    CAS  PubMed  Google Scholar 

  377. Garriott JC, DiMaio VJM, Zumwalt RE, and Petty CS. Incidence of drugs and alcohol in fatally injured motor vehicle drivers. J Forensic Sci 22:383–389 (1977).

    CAS  PubMed  Google Scholar 

  378. Warren R, Simpson H, Hilchie J, Cimbura G, Lucas D, and Bennett R. Drugs detected in fatally injured drivers in the province of Ontario. Alcohol Drugs Traffic Safety 1:203–217 (1980).

    Google Scholar 

  379. Fortenberry JC, Brown DB, and Shelvin LT. Analysis of drug involvement in traffic fatalities in Alabama. Am J Drug Alcohol Abuse 12:257–267 (1986).

    CAS  PubMed  Google Scholar 

  380. McLean S, Parsons RS, Chesterman RB, Johnson MG, and Davies NW. Drugs, alcohol and road accidents in Tasmania. Med J Aust 147:6–11 (1987).

    CAS  PubMed  Google Scholar 

  381. Logan BK and Schwilke EW. Drug and alcohol use in fatally injured drivers in Washington state. J Forensic Sci 41:505–510 (1996).

    CAS  PubMed  Google Scholar 

  382. Finkle BS, Biasotti AA, and Bradford LW. The occurrence of some drugs and toxic agents encountered in drinking driver investigations. J Forensic Sci 13:236–245 (1968).

    CAS  PubMed  Google Scholar 

  383. Robinson TA. The incidence of drugs in impaired driving specimens in Northern Ireland. J Forensic Sci Soc 19:237–241 (1979).

    CAS  PubMed  Google Scholar 

  384. White JM, Clardy DO, Graves MH, Kuo MC, MacDonald BJ, Wiersema SJ, and Fitzpatrick G. Testing for sedative-hypnotic drugs in the impaired driver: a survey of 72,000 arrests. Clin Toxicol 18:945–957 (1981).

    CAS  PubMed  Google Scholar 

  385. Peel HW, Perrigo BJ, and Mikhael NZ. Detection of drugs in saliva of impaired drivers. J Forensic Sci 29:185–189 (1984).

    CAS  PubMed  Google Scholar 

  386. Barbone F, McMahon AD, Davey PG, Morris AD, Reid IC, McDevitt DG, and MacDonald TM. Association of road-traffic accidents with benzodiazepine use. Lancet 352:1331–1336 (1998).

    CAS  PubMed  Google Scholar 

  387. Liljequist R, Linnoila M, Mattila MJ, Saario I, and Seppala T. Effect of two weeks’ treatment with thioridazine, chlorpromazine, sulpiride and bromazepam, alone or in combination with alcohol, on learning and memory in man. Psychopharmacologia 44:205–208 (1975).

    CAS  PubMed  Google Scholar 

  388. Hughes FW, Forney RB, and Richards AB. Comparative effect in human subjects of chlordiazepoxide, diazepam, and placebo on mental and physical performance. Clin Pharmacol Ther 6:139–145 (1965).

    CAS  PubMed  Google Scholar 

  389. Staak M, Raff G, and Strohm H. Pharmacopsychological investigation of changes in mood induced by dipotassium chlorazepate with and without simultaneous alcohol administration. Int J Clin Pharmacol Ther Toxicol 18:283–291 (1980).

    CAS  PubMed  Google Scholar 

  390. Lawton MP and Cahn B. The effects of diazepam (Valium®) and alcohol on psychomotor performance. J Nerv Ment Dis 136:550–554 (1963).

    Google Scholar 

  391. Molander L and Duvhok C. Acute effects of oxazepam, diazepam and methylperone, alone and in combination with alcohol on sedation, coordination and mood. Acta Pharmacol Toxicol 38:145–160 (1976).

    CAS  Google Scholar 

  392. van Steveninck AL, Gieschke R, Schoemaker RC, Roncari G, Tuk B, Pieters MSM, et al. Pharmacokinetic and pharmacodynamic interactions of bretazenil and diazepam with alcohol. Br J Clin Pharmacol 41:565–573 (1996).

    PubMed  Google Scholar 

  393. van Steveninck AL, Gieschke R, Schoemaker HC, Pieters MSM, Kroon JM, Breimer DD, and Cohen AF. Pharmacodynamic interactions of diazepam and intravenous alcohol at pseudo steady state. Psychopharmacology 110:471–478 (1993).

    PubMed  Google Scholar 

  394. Saario I and Linnoila M. Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving. Acta Pharmacol Toxicol 38: 382–392 (1976).

    CAS  Google Scholar 

  395. Lichter JL, Korttila K, Apfelbaum J, Rupani G, Ostman P, Lane B, et al. Alcohol after midazolam sedation: does it really matter. Anesth Analges 70:S 237 (1990).

    Google Scholar 

  396. Saario I, Linnoila M, and Maki M. Interaction of drugs with alcohol on human psychomotor skills related to driving: effect of sleep deprivation or two weeks’ treatment with hypnotics. J Clin Pharmacol 15:52–59 (1975).

    CAS  Google Scholar 

  397. Grigoleit HG, Hajdu P, Hundt HKL, Koeppen D, Malerczyk V, Meyer BH, et al. Pharmacokinetic aspects of the interaction between clobazam and cimetidine. Eur J Clin Pharmacol 25:139–142 (1983).

    CAS  PubMed  Google Scholar 

  398. Sanders LD, Whitehead C, Gildersleve CD, Rosen M, and Robinson JO. Interaction of H2-receptor antagonists and benzodiazepine sedation. Anaesthesia 48:286–292 (1993).

    CAS  PubMed  Google Scholar 

  399. Wilson CM, Robinson FP, Thompson EM, Dundee JW, and Elliot P. Effect of pretreatment with ranitidine on the hypnotic action of single doses of midazolam, temazepam and zopiclone. Br J Anaesth 58:483–486 (1986).

    CAS  PubMed  Google Scholar 

  400. Van Hecken AM, Tjandramaga TB, Verbesselt R, and De Schepper PJ. The influence of diflunisal on the pharmacokinetics of oxazepam. Br J Clin Pharmacol 20:225–234 (1985).

    PubMed  Google Scholar 

  401. Huang W and Moody DE. Immunoassay detection of benzodiazepines and benzodiazepine metabolites in blood. J Anal Toxicol 19:333–342 (1995).

    CAS  PubMed  Google Scholar 

  402. Erickson DA, Mather G, Trager WF, Levy RH, and Keims JJ. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 27:1488–1495 (1999).

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moody, D.E. (2004). Drug Interactions with Benzodiazepines. In: Mozayani, A., Raymon, L.P. (eds) Handbook of Drug Interactions. Forensic Science and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-654-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-654-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-424-1

  • Online ISBN: 978-1-59259-654-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics