Skip to main content

Abstract

This chapter has two distinct parts. The first will deal with the clinical aspects of the use of corticosteroids in neuro-oncology. The second will review what is known of the biological basis of the remarkable effects of this class of drugs upon peritumoral brain edema. Unfortunately, despite decades of work, we still know all too little. Most of what we do clinically with corticosteroids is empirical. The absence of a full understanding of their mechanism of action has blocked the search for drugs with similar benefit but that lack their troublesome side effects. Nonetheless, this deficiency in our understanding of how steroids work does not detract from the tremendous impact that this class of drugs has had upon the care of patients with brain tumors since they were introduced for control of tumor-induced edema nearly 40 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Galicich JH, French LA, Melby JC. Use of dexamethasone in treatment of cerebral edema associated with brain tumor. J Lancet 1961; 31: 46–53.

    Google Scholar 

  2. Maxwell RE, Long DM, French LA. The clinical effects of a synthetic gluco-corticoid used for brain edema in the practice of neurosurgery. In: Steroids and Brain Edema. Rueben HJ, Schurman K, eds. Springer Verlag, New York, 1972, pp. 219–239.

    Chapter  Google Scholar 

  3. Vecht CJ, Hovestadt A, Verbiest HBC, van Vliet JJ, van Putten WLJ. Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology 1994; 44: 675–680.

    CAS  Google Scholar 

  4. Vecht CJ, Verbiest HBC. Use of glucocorticoids in neuro-oncology. In: Neurologic Complications of Cancer. Wiley RG, ed. Marcel Dekker, New York, 1995, pp. 199–218.

    Google Scholar 

  5. Delattre J-Y, Posner JB. Neurological complications of chemotherapy and radiation therapy. In: Neurology and General Medicine, 2nd ed. Aminoff MJ, ed. Churchill Livingstone, New York, 1995.

    Google Scholar 

  6. Conn HO, Blitzer BL. Non-association of adrenocorticosteroid therapy and peptic ulcer. N Engl J Med 1976; 294: 473–479.

    Article  PubMed  CAS  Google Scholar 

  7. Conn HO, Poynard T. Andrenocorticosteroid administration and peptic ulcer: a critical analysis. J Chron Dis 1985; 38: 457–468.

    Article  PubMed  CAS  Google Scholar 

  8. Carson JL, Strom BL, Schinnar R, et al. The low risk of upper gastrointestinal bleeding in patients dispensed corticosteroids. Am J Med 1991; 91: 223–228.

    Article  PubMed  CAS  Google Scholar 

  9. Vick NA. Letter to the editor. J Neurooncol 1988; 6: 199.

    Article  PubMed  CAS  Google Scholar 

  10. Dropcho EJ, Soong SJ. Steroid-induced weakness in patients with primary brain tumors. Neurology 1991; 41: 1235–1239.

    Article  PubMed  CAS  Google Scholar 

  11. Ruff, RL. Endocrine myopathies. In: Myology: Basic and Clinical. Engle AG, Banker BQ, eds. McGraw-Hill, New York, 1986, pp. 1871–1879.

    Google Scholar 

  12. Koski CL, Ritenberick DH, Max SR. Oxidative metabolism of skeletal muscle in steroid atrophy. Arch Neurol 1974; 31: 407–410.

    Article  PubMed  CAS  Google Scholar 

  13. Kelly FJ, McGrath JA, Goldspink DF, Cullen MJ. A morphological 22. and biochemical study on the actions of corticosteroids on rat skeletal muscle. Muscle Nerve 1986; 9: 1–10. 23

    Google Scholar 

  14. Askari A, Vignos PJ, Moskowitz RW. Steriod myopathy in connective tissue disease. Am J Med 1976; 61: 485.

    Article  PubMed  CAS  Google Scholar 

  15. Jain KK. Drug-Induced Neurologic Disorders. Hogrege and Huber, Seattle, 1996, p. 245.

    Google Scholar 

  16. Layzer RB. Neuromuscular Manifestations of Systemic Disease. FA Davis, Philadelphia, 1985, pp. 101–104.

    Google Scholar 

  17. Choi Y, Thrasher K, Werk EE, Sholiton LJ, Olinger C. Effect of diphenylhydantoin on cortisol kinetics in humans. J Pharmacol Exp Ther 1971; 176: 27–34.

    PubMed  CAS  Google Scholar 

  18. Hague N, Thrasher K, Werk EE, Knowles HC, Sholiton LJ. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol Metab 1972; 34: 44–50.

    Article  Google Scholar 

  19. Chalk JB, Ridgeway K, Brophy T, Yelland JD, Eadie MJ. Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry 1984; 47: 1087–1090.

    Article  PubMed  CAS  Google Scholar 

  20. Penry JK, Newmark ME. The use of antiepileptic drugs. Ann Intern Med 1979; 90: 207–218.

    Article  PubMed  CAS  Google Scholar 

  21. Klazo I. Neuropathological aspects of brain edema. J Neuropath Exp Neurol 1967; 26: 1–14.

    Article  Google Scholar 

  22. Fishman RA. Steroids in the treatment of brain edema. N Engl J Med 1982; 306: 359–360.

    Article  PubMed  CAS  Google Scholar 

  23. Reese T, Karnovsky M. Fine structural localization of blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34: 207–217.

    Article  PubMed  CAS  Google Scholar 

  24. Brightman NW, Reese TS, Vick NA, Bigner DD. A mechanism underlying the lack of a blood-brain barrier to peroxidase in virally induced brain tumors. J Neuropath Exp Neurol 1971; 30: 139–140.

    Article  PubMed  CAS  Google Scholar 

  25. Vick NA, Bigner DD. Microvascular abnormalities in virally induced canine brain tumors: structural bases for altered blood-brain barrier function. J Neurol Sci 1972; 17: 29–39.

    Article  PubMed  CAS  Google Scholar 

  26. Vick NA. Brain tumor microvasculature. In: Brain Metastasis. Weiss L, Gilbert HA, Posner JG, eds. G.K. Hall & Company, Boston, 1980, pp. 115–133.

    Chapter  Google Scholar 

  27. Nakagawâ H, Groothuis DR, Owens ES, Fenstermacher JD, Patlak CS, Blasberg RG. Dexamethasone effects on [125I] Albumen distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 1987; 7: 687–701.

    Article  PubMed  Google Scholar 

  28. Molnar P, Lapin GD, Groothuis DR. The effects of dexamethasone on experimental brain tumors: I. Transcapillary transport and blood flow in RG-2 rat gliomas. J Neuro-oncol 1995; 25: 19–28.

    Article  CAS  Google Scholar 

  29. Warnke PC, Molnar P, Lapin GD, Kuruvilla A, Groothuis DR. The effects of dexamethasone or transcapillary transport in experimental brain tumors: II. Canine brain tumors. J Neuro-oncol 1995; 25: 29–38.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paleologos, N.A., Vick, N.A. (2003). Corticosteroids in Neuro-Oncology. In: Schiff, D., Wen, P.Y. (eds) Cancer Neurology in Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-317-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-317-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4703-4

  • Online ISBN: 978-1-59259-317-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics