Skip to main content

Telomeres, DNA Repair Proteins, and Making Ends Meet

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 244 Accesses

Abstract

Telomeres are unique structures at the physical ends of linear eukaryotic chromosomes. They were first described over 60 years ago by Hermann Muller in his classic studies of the fruit fly Drosophilia melanogaster (78). He coined the name ‘telomere’ from the Greek—telos meaning end and meros meaning part—based on their chromosome end protection function. Shortly thereafter, Barbara McClintock’s cytogenetic observations in maize demonstrated that broken chromosomes could fuse with one another to form dicentric chromosomes (72,73). These early studies brought to light the fact that natural chromosome ends are distinguished from random breaks and protected from illegitimate end-joining reactions. How the cell accomplishes this critical discrimination is still under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchetti, S., and C. M. Counter, 1995. Telomeres and telomerase in human cancer (review). Int. J. Oncol. 7: 423–432.

    PubMed  CAS  Google Scholar 

  2. Bailey, S. M., J. Meyne, D. J. Chen, A. Kurimasa, G. C. Li, B. E. Lehnert, and E. H. Goodwin. 1999. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc. Nat. Acad. Sci. (USA) 96: 14899–14904.

    CAS  Google Scholar 

  3. Bertuch, A., and V. Lundblad. 1998. Telomeres and double-strand breaks: trying to make ends meet. Trends Cell Biol. 8: 339–342.

    PubMed  CAS  Google Scholar 

  4. Bianchi, A., and T. deLange. 1999. Ku binds telomeric DNA in vitro J. Biol. Chem. 274: 21223–21227.

    PubMed  CAS  Google Scholar 

  5. Bianchi, A., S. Smith, L. Chong, P. Elias, and T. deLange. 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16: 1785–1794.

    PubMed  CAS  Google Scholar 

  6. Bianchi, A., R. M. Stansel, L. Fairall, J. D. Griffith, D. Rhodes, and T. deLange. 1999. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J. 18: 5735–5744.

    PubMed  CAS  Google Scholar 

  7. Biessmann, H., and J. M. Mason. 1992. Genetics and molecular biology of telomeres. Adv. Genet. 30: 185–249.

    PubMed  CAS  Google Scholar 

  8. Biessmann, H., and J. M. Mason. 1997. Telomere maintenance without telomerase. Chromo-soma 106: 63–69.

    CAS  Google Scholar 

  9. Blackburn, E. H. 1991. Structure and function of telomeres. Nature 350: 569–573.

    PubMed  CAS  Google Scholar 

  10. Blackburn, E. H., and J. W. Szostak. 1984. The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53: 163–194.

    PubMed  CAS  Google Scholar 

  11. Blasco, M. A., H. W. Lee, M. P. Hande, E. Samper, P. M. Lansdorp, R. A. DePinho, and C. W. Greider. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    PubMed  CAS  Google Scholar 

  12. Boulton, S. J., and S. P. Jackson. 1998. Components of the Ku-dependent nonhomologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17: 1819–1828.

    PubMed  CAS  Google Scholar 

  13. Boulton, S. J., and S. P. Jackson. 1996. Identification of a Saccharomyces cerevisiae Ku80 homolog: Roles in DNA double-strand break rejoining and in telomeric maintenance. Nucl. Acids. Res. 24: 4639–4648.

    PubMed  CAS  Google Scholar 

  14. Boulton, S. J., and S. P. Jackson. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA-repair pathways. EMBO J. 15: 5093–5103.

    CAS  Google Scholar 

  15. Broccoli, D., A. Smogorzewska, L. Chong, and T. Delange. 1997. Human telomeres contain 2 distinct Myb-related proteins; TRF1 and TRF2. Nat. Gen. 17: 231–235.

    CAS  Google Scholar 

  16. Carney, J. P., R. S. Maser, H. Olivares, E. M. Davis, M. LeBeau, J. R. Yates, et al. 1998. The hMREI1/hRAD50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    PubMed  CAS  Google Scholar 

  17. Carter, T., I. Vancurova, I. Sun, W. Lou, and S. Deleon. 1990. A DNA-activated protein kinase from Hela-cell nuclei. Mol. Cell. Biol. 10: 6460–6471.

    PubMed  CAS  Google Scholar 

  18. Colgin, L. M., and R. R. Reddel. 1999. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dey. 9: 97–103.

    CAS  Google Scholar 

  19. Cornforth, M. N. 1998. Radiation-induced damage and the formation of chromosomal aberrations, p. 559–585. In J. A. Nickoloff and M. F. Hoekstra (eds.), DNA Damage and Repair, Vol. 2. Humana Press Inc, Totowa, NJ.

    Google Scholar 

  20. Counter, C. M. 1996. The roles of telomeres and telomerase in cell life span. Mutat. Res.-Rev. Genet. Toxicol. 366: 45–63.

    Google Scholar 

  21. Counter, C. M., A. A. Avilion, C. E. Lefeuvre, N. G. Stewart, C. W. Greider, C. B. Harley, and S. Bacchetti. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11: 1921–1929.

    PubMed  CAS  Google Scholar 

  22. Critchlow, S. E., Bowater, R. P. and Jackson, S. P. 1997. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA Ligase IV. Curr. Biol. 7 (588–598).

    Google Scholar 

  23. Critchlow, S. E., and S. P. Jackson. 1998. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23: 394–398.

    PubMed  CAS  Google Scholar 

  24. diFagagna, E D., M. P. Hande, W. M. Tong, P. M. Lansdorp, Z. Q. Wang, and S. P. Jackson. 1999. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat. Genet. 23: 76–80.

    CAS  Google Scholar 

  25. Dionne, I., and R. J. Wellinger. 1996. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Nat. Acad. Sci. (USA) 93: 13902–13907.

    CAS  Google Scholar 

  26. Dolganov, G. M., R. S. Maser, A. Novikov, L. Tosto, S. Chong, D. A. Bressan, and J. H. J. Petrini. 1996. Human RAD50 is physically associated with human MRE11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16: 4832–4841.

    PubMed  CAS  Google Scholar 

  27. Dynan, W. S., and S. Yoo. 1998. Interaction of Ku protein and DNA-dependent protein-kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26: 1551–1559.

    PubMed  CAS  Google Scholar 

  28. Featherstone, C., and S. P. Jackson. 1999. Ku; a DNA repair protein with multiple cellular functions? Mutat. Res.-DNA Repair 434: 3–15.

    PubMed  CAS  Google Scholar 

  29. Feldmann, H., L. Driller, B. Meier, G. Mages, J. Kellermann, and E. L. Winnacker. 1996. Hdf2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271: 27765–27769.

    CAS  Google Scholar 

  30. Feldmann, H., and E. L. Winnacker. 1993. A putative homolog of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268: 12895–12900.

    CAS  Google Scholar 

  31. Ferguson, D. O., J. M. Sekiguchi, S. Chang, K. M. Frank, Y. J. Gao, R. A. DePinho, and F. W. Alt. 2000. The nonhomologous end joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Nat. Acad. Sci. (USA) 97: 6630–6633.

    CAS  Google Scholar 

  32. Gao, Y. J., D. O. Ferguson, W. Xie, J. P. Manis, J. Sekiguchi, K. M. Frank, J., et al. 2000. Interplay of p53 and DNA repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404: 897–900.

    PubMed  CAS  Google Scholar 

  33. Garagna, S., D. Broccoli, C. A. Redi, J. B. Searle, H. J. Cooke, and E. Capanna. 1995. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103: 685–692.

    PubMed  CAS  Google Scholar 

  34. Gottlieb, T. M., and S. P. Jackson. 1993. The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen. Cell 72: 131–142.

    PubMed  CAS  Google Scholar 

  35. Gottschling, D. E., O. M. Aparicio, B. L. Billington, and V. A. Zakian. 1990. Position effect at Saccharomyces cerevisiae telomeres: Reversible repression of Pol-Ii transcription. Cell 63: 751–762.

    PubMed  CAS  Google Scholar 

  36. Gravel, S., M. Larrivee, P. Labrecque, and R. J. Wellinger. 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744.

    PubMed  CAS  Google Scholar 

  37. Greider, C. W., and E. H. Blackburn. 1985. Identification of a specific telomere terminal transferase-activity in Tetrahymena extracts. Cell 43: 405–413.

    PubMed  CAS  Google Scholar 

  38. Greider, C. W., and E. H. Blackburn. 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–337.

    PubMed  CAS  Google Scholar 

  39. Griffith, J. D., L. Comeau, S. Rosenfield, R. M. Stansel, A. Bianchi, H. Moss, and T. deLange. 1999. Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    PubMed  CAS  Google Scholar 

  40. Grunstein, M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9: 383–387.

    PubMed  CAS  Google Scholar 

  41. Gu, Y. S., S. F. Jin, Y. J. Gao, D. T. Weaver, and F. W. Alt. 1997. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity and inability to support V(D)J recombination. Proc. Nat. Acad. Sci. (USA) 94: 8076–8081.

    CAS  Google Scholar 

  42. Haber, J. E. 1998. The many interfaces of Mrell. Cell 95: 583–586.

    PubMed  CAS  Google Scholar 

  43. Haber, J. E. 2000. Partners and pathways: repairing a double-strand break. Trends Genet. 16: 259–264.

    PubMed  CAS  Google Scholar 

  44. Haber, J. E. 1999. Sir-Ku-itous routes to make ends meet. Cell 97: 829–832.

    PubMed  CAS  Google Scholar 

  45. Hammarsten, O., and G. Chu. 1998. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Nat. Acad Sci. (USA) 95: 525–530.

    CAS  Google Scholar 

  46. Hammarsten, O., L. G. DeFazio, and G. Chu. 2000. Activation of DNA-dependent protein kinase by single-stranded DNA ends. J. Biol. Chem. 275: 1541–1550.

    PubMed  CAS  Google Scholar 

  47. Hande, P., P. Slijepcevic, A. Silver, S. Bouffler, P. vanBuul, P. Bryant, and P. Lansdorp. 1999. Elongated telomeres in scid mice. Genomics 56: 221–223.

    PubMed  CAS  Google Scholar 

  48. Harley, C. B., A. B. Futcher, and C. W. Greider. 1990. Telomeres shorten during aging of human fibroblasts. Nature 345: 458–460.

    PubMed  CAS  Google Scholar 

  49. Harley, C. B., H. Vaziri, C. M. Counter, and R. C. Allsopp. 1992. The telomere hypothesis of cellular aging. Exp. Gerontol. 27: 375–382.

    PubMed  CAS  Google Scholar 

  50. Hayflick, C. B. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell. Res. 37: 614–636.

    PubMed  CAS  Google Scholar 

  51. Hsu, H. L., D. Gilley, E. H. Blackburn, and D. J. Chen. 1999. Ku is associated with the telomere in mammals. Proc. Nat. Acad. Sci. (USA) 96: 12454–12458.

    CAS  Google Scholar 

  52. Jeggo, P. A. 1998. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Rad. Res. 150: S80 - S91.

    CAS  Google Scholar 

  53. Jin, S., Inoue, S. and Weaver, D. T. 1997. Review, Vol. 29. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  54. Kanaar, R., J. H. J. Hoeijmakers, and D. C. vanGent. 1998. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 8: 483–489.

    PubMed  CAS  Google Scholar 

  55. Kim, N. W., M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West, P. L. C. Ho, et al. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    PubMed  CAS  Google Scholar 

  56. Kim, S. H., R. Kaminker, and J. Campisi. 1999. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23: 405–412.

    PubMed  CAS  Google Scholar 

  57. Kim, S. T., D. S. Lim, C. E. Canman, and M. B. Kastan. 1999. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274: 37538–37543.

    PubMed  CAS  Google Scholar 

  58. Kipling, D., and H. J. Cooke. 1990. Hypervariable ultra-long telomeres in mice. Nature 347: 400–402.

    PubMed  CAS  Google Scholar 

  59. Laroche, T., S. G. Martin, M. Gotta, H. C. Gorham, F. E. Pryde, E. J. Louis, and S. M. Gasser. 1998. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8: 653–656.

    PubMed  CAS  Google Scholar 

  60. Lee, S. E., F. Paques, J. Sylvan, and J. E. Haber. 1999. Role of yeast Sir genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9: 767–770.

    PubMed  CAS  Google Scholar 

  61. LeRhun, Y., J. B. Kirkland, and G. M. Shah. 1998. Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 245: 1–10.

    CAS  Google Scholar 

  62. Leuther, K. K., O. Hammarsten, R. D. Kornberg, and G. Chu. 1999. Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18: 1114–1123.

    PubMed  CAS  Google Scholar 

  63. Li, Z. Y., T. Otevrel, Y. J. Gao, H. L. Cheng, B. Seed, T. D. Stamato, G. E. Taccioli, and F. W. Alt. 1995. The Xrcc4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83: 1079–1089.

    PubMed  CAS  Google Scholar 

  64. Liang, F., M. G. Han, R. J. Romanienko, and M. Jasin. 1998. Homology directed repair is a major double-strand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 95: 5172–5177.

    PubMed  CAS  Google Scholar 

  65. Lingner, J., J. R. Cooper, and T. R. Cech. 1995. Telomerase and DNA end replication: No longer a lagging-strand problem. Science 269: 1533–1534.

    PubMed  CAS  Google Scholar 

  66. Makarov, V. L., Y. Hirose, and J. P. Langmore. 1997. Long G-tails at both ends of human chromosomes suggest a C-strand degradation mechanism for telomere shortening. Cell 88: 657–666.

    PubMed  CAS  Google Scholar 

  67. Marcand, S., E. Gilson, and D. Shore. 1997. A protein counting mechanism for telomere length regulation in yeast. Science 275: 986–990.

    PubMed  CAS  Google Scholar 

  68. Martens, U. M., E. A. Chavez, S. S. S. Poon, C. Schmoor, and R M. Landsdorp. 2000. Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp. Cell Res. 256: 291–299.

    PubMed  CAS  Google Scholar 

  69. Martens, U. M., J. Zijlmans, S. S. S. Poon, W. Dragowska, J. Yui, E. A. Chavez, R. K. Ward, and R. M. Lansdorp. 1998. Short telomeres on human chromosome 17p. Nat. Genet. 18: 76–80.

    PubMed  CAS  Google Scholar 

  70. Martin, S. G., T. Laroche, N. Suka, M. Grunstein, and S. M. Gasser. 1999. Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in yeast. Cell 97: 621–633.

    PubMed  CAS  Google Scholar 

  71. Maser, R. S., K. J. Monsen, B. E. Nelms, and J. H. J. Petrini. 1997. hMREl l and hRAD50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell Biol. 17: 6087–6096.

    Google Scholar 

  72. McClintock, B. 1942. The fusion of broken ends of chromosomes following nuclear fusion. Proceedings National Academy of Sciences USA 28: 458–463.

    CAS  Google Scholar 

  73. McClintock, B. 1941. The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.

    PubMed  CAS  Google Scholar 

  74. Metcalfe, J. A., J. Parkhill, L. Campbell, M. Stacey, P. Biggs, P. J. Byrd, and A. M. R. Taylor. 1996. Accelerated telomere shortening in ataxia telangiectasia. Nat. Genet. 13: 350–353.

    PubMed  CAS  Google Scholar 

  75. Mills, K. D., D. A. Sinclair, and L. Guarente. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97: 609–620.

    PubMed  CAS  Google Scholar 

  76. Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. and Homma M. 1981. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with Polymyositis-Scleroderma Overlap. J. Clin. Invest. 68: 611–620.

    PubMed  CAS  Google Scholar 

  77. Morin, G. B. 1996. Telomere integrity and cancer. J. Nat. Cancer Inst. 88: 1095–1096.

    PubMed  CAS  Google Scholar 

  78. Muller, H. 1938. The remaking of chromosomes. Collecting Net Woods Hole 13: 181–198.

    Google Scholar 

  79. Murnane, J. P., L. Sabatier, B. A. Marder, and W. F. Morgan. 1994. Telomere dynamics in an immortal human cell line. EMBO J. 13: 4953–4962.

    PubMed  CAS  Google Scholar 

  80. Nanda, I., S. Schneiderrasp, H. Winking, and M. Schmid. 1995. Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia, muridae) during Robertsonian rearrangements. Chromosome Res. 3: 399–409.

    PubMed  CAS  Google Scholar 

  81. Nugent, C. I., G. Bosco, L. O. Ross, S. K. Evans, A. P. Salinger, J. K. Moore, et al. 1998. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8: 657–660.

    PubMed  CAS  Google Scholar 

  82. Ohta, K., A. Nicolas, M. Furuse, A. Nabetani, H. Ogawa, and T. Shibata. 1998. Mutations in the MRS11, RAD50, XRS2 and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proceedings of the National Academy of Sciences of the United States of America 95: 646–651.

    PubMed  CAS  Google Scholar 

  83. Olovnikov, A. M. 1971. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk. (SSSR) 201: 1496–1499.

    CAS  Google Scholar 

  84. Pandita, T. K., S. Pathak, and C. R. Geard. 1995. Chromosome end associations: Telomeres and telomerase activity in ataxia telangiectasia cells. Cytogenet. Cell Genet. 71: 86–93.

    PubMed  CAS  Google Scholar 

  85. Petrini, J. H. J., M. E. Walsh, C. Dimare, X. N. Chen, J. R. Korenberg, and D. T. Weaver. 1995. Isolation and characterization of the human MRE11 homolog. Genomics 29: 80–86.

    PubMed  CAS  Google Scholar 

  86. Polotnianka, R. M., J. Li, and A. J. Lustig. 1998. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8: 831–834.

    PubMed  CAS  Google Scholar 

  87. Porter, S. E., P. W. Greenwell, K. B. Ritchie, and T. D. Petes. 1996. The DNA-binding protein Hdflp (a putative Ku homolog) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24: 582–585.

    CAS  Google Scholar 

  88. Preston, R. J. 1997. Telomeres, telomerase and chromosome stability. Radiat. Res. 147: 529–534.

    PubMed  CAS  Google Scholar 

  89. Prowse, K. R., and C. W. Greider. 1995. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proceedings of the National Academy of Sciences of the United States of America 92: 4818–4822.

    PubMed  CAS  Google Scholar 

  90. Ramsden, D. A., and M. Gellert. 1998. Ku protein stimulates DNA end joining by mammalian DNA Ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17: 609–614.

    PubMed  CAS  Google Scholar 

  91. Robertson, W. M. R. B. 1916. I. Taxonomic relationships shown in the chromosomes of Tettegidae and Acrididiae: V-shaped chromosomes and their significance in Acrididae, Locustidae and Grillidae: Chromosomes and variation. J. Morphol. 27: 179–331.

    Google Scholar 

  92. Ruscetti, T., B. E. Lehnert, J. Halbrook, H. LeTrong, M. F. Hoekstra, D. J. Chen, and S. R. Peterson. 1998. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273: 14461–14467.

    PubMed  CAS  Google Scholar 

  93. Saltman, D., R. Morgan, M. L. Cleary, and T. Delange. 1993. Telomeric structure in cells with chromosome end associations. Chromosoma 102: 121–128.

    PubMed  CAS  Google Scholar 

  94. Samper, E, F. A. Goytisolo, P. Slijepcevic, P. P. W. van Buul, and M. A. Blasco. 2000. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Reports 1: 244–252.

    PubMed  CAS  Google Scholar 

  95. Shampay, J., J. W. Szostak, and E. H. Blackburn. 1984. DNA-sequences of telomeres maintained in yeast. Nature 310: 154–157.

    PubMed  CAS  Google Scholar 

  96. Siede, W., A. A. Friedl, I. Dianova, F. EckardtSchupp, and E. C. Friedberg. 1996. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142: 91–102.

    PubMed  CAS  Google Scholar 

  97. Slijepcevic, P. 1998. Telomeres and mechanisms of Robertsonian fusion. Chromosoma 107: 136–140.

    PubMed  CAS  Google Scholar 

  98. Slijepcevic, P., M. P. Hande, S. D. Bouffler, P. Lansdorp, and P. E. Bryant. 1997. Telomere length, chromatin structure and chromosome fusigenic potential. Chromosoma 106: 413–421.

    PubMed  CAS  Google Scholar 

  99. Smith, G. C. M., and S. P. Jackson. 1999. The DNA-dependent protein kinase. Genes. Dey. 13: 916–934.

    CAS  Google Scholar 

  100. Smith, S., I. Giriat, A. Schmitt, and T. deLange. 1998. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484–1487.

    PubMed  CAS  Google Scholar 

  101. Smogorzewska, A., B. VanSteensel, A. Bianchi, S. Oelmann, M. R. Schaefer, G. Schnapp, and T. DeLange. 2000. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20: 1659–1668.

    PubMed  CAS  Google Scholar 

  102. Solomon, E. J., Borrow, J. and Goddard, A. D. 1991. Chromosome aberrations and cancer. Science 254: 1153–1159.

    PubMed  CAS  Google Scholar 

  103. Sprung, C. N., T. M. Bryan, R. R. Reddel, and J. P. Murnane. 1997. Normal telomere maintenance in immortal ataxia telangiectasia cell lines. Mutat. Res. Funda. Molec. Mech. Mutag. 379: 177–184.

    CAS  Google Scholar 

  104. Taccioli, G. E., T. M. Gottlieb, T. Blunt, A. Priestley, J. Demengeot, R. Mizuta, et al. 1994. Ku80, product of the Xrcc5 gene and its role in DNA repair and V(D)J recombination. Science 265: 1442–1445.

    PubMed  CAS  Google Scholar 

  105. Taghian, D. G., and J. A. Nickoloff. 1997. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17: 6386–6393.

    PubMed  CAS  Google Scholar 

  106. Trujillo, K. M., S. S. F. Yuan, E. Lee, and P. Sung. 1998. Nuclease activities in a complex of human recombination and DNA repair factors: RAD50, MRE1 1 and p95. J. Biol. Chem. 273: 21447–21450.

    PubMed  CAS  Google Scholar 

  107. Tsukamoto, Y., J. Kato, and H. Ikeda. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388: 900–903.

    CAS  Google Scholar 

  108. vanSteensel, B., and T. deLange. 1997. Control of telomere length by the human telomeric protein TRF1. Nature 385: 740–743.

    CAS  Google Scholar 

  109. vanSteensel, B., A. Smogorzewska, and T. deLange. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413.

    CAS  Google Scholar 

  110. Varon, R. C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, et al. 1998. Nibrin, a novel DNA double strand break repair protein, is mutated in Nijmegen Breakage Syndrome. Cell 93: 467–476.

    PubMed  CAS  Google Scholar 

  111. Watson, J. D. 1972. Origin of concatameric T4 DNA. Nature 239: 197–201.

    CAS  Google Scholar 

  112. Wellinger, R. J., K. Ethier, P. Labrecque, and V. A. Zakian. 1996. Evidence for a new step in telomere maintenance. Cell 85: 423–433.

    PubMed  CAS  Google Scholar 

  113. Wellinger, R. J., and D. Sen. 1997. The DNA structures at the ends of eukaryotic chromosomes. Eur. J. Cancer 33: 735–749.

    PubMed  CAS  Google Scholar 

  114. Wellinger, R. J., A. J. Wolf, and V. A. Zakian. 1993. Saccharomyces telomeres acquire single-strand TG(1–3) tails late in S-phase. Cell 72: 51–60.

    CAS  Google Scholar 

  115. Wilson, T. E., U. Grawunder, and M. R. Lieber. 1997. Yeast DNA Ligase-IV mediates nonhomologous DNA end joining. Nature 388: 495–498.

    PubMed  CAS  Google Scholar 

  116. Wright, W. E., V. M. Tesmer, K. E. Huffman, S. D. Levene, and J. W. Shay. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes. Dev. 11: 2801–2809.

    PubMed  CAS  Google Scholar 

  117. Xia, S. J. J., M. A. Shammas, and R. J. S. Reis. 1996. Reduced telomere length in ataxia telangiectasia fibroblasts. Mutation Research-DNA Repair 364: 1–11.

    PubMed  Google Scholar 

  118. Zakian, V. A. 1996. Structure, function and replication of Saccharomyces cerevisiae telomeres. Ann. Rev. Gene. 30: 141–172.

    CAS  Google Scholar 

  119. Zakian, V. A. 1989. Structure and function of telomeres. Ann. Rev. Genet. 23: 579–604.

    PubMed  CAS  Google Scholar 

  120. Zakian, V. A. 1995. Telomeres: Beginning to understand the end. Science 270: 1601–1607.

    PubMed  CAS  Google Scholar 

  121. Zdzienicka, M. Z. 1999. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 81: 107–116.

    PubMed  CAS  Google Scholar 

  122. Zhu, X. D., B. Kuster, M. Mann, J. H. J. Petrini, and T. deLange. 2000. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genetics 25: 347–352.

    PubMed  CAS  Google Scholar 

  123. Zijlmans, J., U. M. Martens, S. S. S. Poon, A. K. Raap, H. J. Tanke, R. K. Ward, and P. M. Lansdorp. 1997. Telomeres in the mouse have large interchromosomal variations in the number of T(2)AG(3) repeats. Proc. Nat. Acad. Sci. (USA) 94: 7423–7428.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bailey, S.M., Meyne, J., Goodwin, E.H. (2001). Telomeres, DNA Repair Proteins, and Making Ends Meet. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics