Skip to main content

Metabolic Information Derived from Radioautography

  • Chapter
Handbook of Neurochemistry

Abstract

Radioautography is an application of the nuclear tracer method that allows both the detection and the location of radioactive atoms in biological structures. Radioautographs performed at various time intervals after the administration of a substance tagged with a radioactive atom make it possible to trace the incorporation and migration of the label through various regions of the nervous system and even through various organelles of a given cell. Thus, as noted by Leblond (1965), “Radioautography stands at the crossroads of biochemistry and morphology.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Gross, R. Bogoroch, N. J. Nadler, and C. P. Leblond, The theory and methods of the radioautographic localization of radioelements in tissues, Am. J. Roentgenol. Radium Therapy 65:420–458(1951).

    CAS  Google Scholar 

  2. A. W. Rogers, Techniques of Autoradiography, Elsevier, Amsterdam (1967).

    Google Scholar 

  3. B. Droz and H. Warshawsky, Reliability of the radioautographic technique for the detection of newly-synthesized protein, J. Histochem. Cytochem. 11: 426–435 (1963).

    Article  CAS  Google Scholar 

  4. M. Bergeron and B. Droz, Analyse critique des conditions de fixation et de préparation des tissus pour la détection radioautographique des protéines néoformées, en microscopie électronique, J. Microscopie 7: 201–228 (1968).

    Google Scholar 

  5. Th. Peters and C. A. Ashley, An artefact in radioautography due to binding of free amino acids to tissue by fixatives, J. Cell Biol. 33: 53–60 (1967).

    Article  PubMed  PubMed Central  Google Scholar 

  6. B. Kopriwa and C. P. Leblond, Improvements in the coating technique of radioautography, J. Histochem. Cytochem. 10: 269–284 (1962).

    Article  CAS  Google Scholar 

  7. P. Granboulan, Comparison of emulsions and techniques in electron microscope radio-autography, in The Use of Radioautography in Investigating Protein Synthesis (C. P. Leblond and K. B. Warren, eds.), Vol. 4, pp. 43–63, Academic Press, New York (1965).

    Chapter  Google Scholar 

  8. M. M. Salpeter and L. Bachmann, Assessment of technical steps in electron microscope autoradiography, in The Use of Radioautography in Investigating Protein Synthesis (C. P. Leblond and K. B. Warren, eds.), Vol. 4, pp. 23–41, Academic Press, New York (1965).

    Chapter  Google Scholar 

  9. B. Droz, Synthèse et transfert des proteines cellulaires dans les neurones ganglionnaires; étude radioautographique quantitative en microscopie électronique, J. Microscopie 6: 201–228 (1967).

    CAS  Google Scholar 

  10. I. Smart and C. P. Leblond, Evidence for division and transformations of neuroglial cells in the mouse brain as derived from radioautography after injection of thymidine-3H, J. Comp. Neurol. 116: 349–368 (1961).

    Article  Google Scholar 

  11. O. R. Hommes and C. P. Leblond, Mitotic division of neuroglia in the normal adult rat, J. Comp. Neurol. 129: 269–278 (1967).

    Article  PubMed  CAS  Google Scholar 

  12. J. Altman, DNA metabolism and cell proliferation, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. II, pp. 137–182, Plenum Press, New York (1969).

    Google Scholar 

  13. C. P. Leblond and M. Amano, Synthetic activity in the nucleolus as compared to that in the rest of the cell, J. Histochem. Cytochem. 10: 162–174 (1962).

    Article  CAS  Google Scholar 

  14. H. Koenig, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4: 785–792 (1958).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. B. Droz, Fate of newly-synthesized proteins in neurons, in The Use of Radioautography in Investigating Protein Synthesis (C. P. Leblond and K. B. Warren, eds.), Vol. 4, pp. 159–175, Academic Press, New York (1965).

    Chapter  Google Scholar 

  16. B. Droz, Protein metabolism in nerve cells, in International Review of Cytology (G. H. Boume and J. F. Danielli, eds.), Vol. 25, pp. 363–390, Academic Press, New York (1969).

    Google Scholar 

  17. B. Droz and C. P. Leblorid, Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography, J. Comp. Neurol. 121: 325–346 (1963).

    Article  PubMed  CAS  Google Scholar 

  18. E. Koenig, Nucleic acid and protein metabolism of the axon, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. II, pp. 423–434, Plenum Press, New York (1969).

    Google Scholar 

  19. E. A. Barnard and K. Ostrowski, Autoradiographic methods in enzyme cytochemistry. 11. Studies on some properties of acetylcholinesterase in its sites at the motor end-plate, Exptl. Cell Res. 36: 28–42 (1964).

    Article  PubMed  CAS  Google Scholar 

  20. M. M. Salpeter, Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. I. The distribution of acetylcholinesterase at motor end plates of a vertebrate twitch muscle, J. Cell Biol. 32: 379–389 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. L. S. Wolfe, The distribution of gangliosides in subcellular fractions of guinea-pig cerebral cortex, Biochem. J. 79: 348–355 (1961).

    PubMed  CAS  PubMed Central  Google Scholar 

  22. E. G. Brunngraber and B. D. Brown, Fractionation of brain macromolecules. II. Isolation of protein-linked sialomucopolysaccharides from subcellular, particulate fractions from rat brain, J. Neurochem. 11: 449–459 (1964).

    Article  PubMed  CAS  Google Scholar 

  23. B. Droz, L’appareil de Golgi comme site d’incorporation du galactose-3H dans les neurones ganglionnaires spinaux chez le rat, J. Microscopie 6: 419–424 (1967).

    CAS  Google Scholar 

  24. A. Rambourg, Détection de glycoproteines en microscopie électronique: coloration de la surface cellulaire et de l’appareil de Golgi par un mélange acide chromique-phosphotungstique, Compt. Rend. Acad. Sci. (Paris) 268: 1426–1428 (1967).

    Google Scholar 

  25. L. Olivier, Aspects histologiques de la fixation du soufre dans l’organisme, Thèse de Doctorat en Médecine, Faculté de Médecine, Paris (1956).

    Google Scholar 

  26. F. Chevallier and L. Petit, Incorporation of cholesterol into the central nervous system and its autoradiographic localization, Exptl. Neurol. 10: 250–254 (1966).

    Article  Google Scholar 

  27. F. Chevallier, C. Gautheron, and L. Petit, unpublished.

    Google Scholar 

  28. L. E. Hokin, Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion, Proc. Natl. Acad. Sci. 53: 1369–1376 (1965).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. E. D. Wolfe, L. T. Potter, K. C. Richardson, and J. Axelrod, Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138: 440–442 (1962).

    Article  PubMed  CAS  Google Scholar 

  30. J. Taxi and B. Droz, Etude de l’incorporation de noradrénaline-3H et de 5-hydroxytryptophane-31–1 dans les fibres nerveuses du canal déférent et de l’intestin, Compt. Rend. Acad. Sci. (Paris) 263: 1237–1240 (1966).

    CAS  Google Scholar 

  31. J. Taxi and B. Droz, Etude de l’incorporation de noradrénaline-3H et de 5-hydroxytryptophane dans l’épiphyse et le ganglion cervical supérieur, Compt. Rend. Acad. Sci. (Paris) 263: 1326–1329 (1966).

    CAS  Google Scholar 

  32. J. Taxi and B. Droz, Localisation d’amines biogènes dans le système neurovégétatif périphérique. Etude radioautographique en microscopie électronique après injection de noradrénaline-3H et de 5-hydroxytryptophane-3H, in Neurosecrétion (F. Stutinsky, ed.), pp. 191–202, Springer Verlag, Berlin (1967).

    Chapter  Google Scholar 

  33. M. D. Gershon and L. L. Ross, Radioisotopic studies of the binding, exchange and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor, J. Physiol. 186: 451–476 (1966).

    PubMed  CAS  PubMed Central  Google Scholar 

  34. M. D. Gershon and L. L. Ross, Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography, J. Physiol. 186: 477–492 (1966).

    PubMed  CAS  PubMed Central  Google Scholar 

  35. M. Reivich and J. Glowinski, An autoradiographic study of the distribution of 14Cnorepinephrine in the brain of the rat, Brain 90: 633–646 (1967).

    Article  PubMed  CAS  Google Scholar 

  36. G. K. Aghajanian and F. E. Bloom, Localization of tritiated serotonin in rat brain by electron microscopic autoradiography, J. Pharmacol. Exptl. Therap. 156: 23–30 (1967).

    CAS  Google Scholar 

  37. G. K. Aghajanian and F. E. Bloom, Electron microscopic localization of tritiated norepinephrine in rat brain: Effect of drugs, J. Pharmacol. Exptl. Therap. 156: 407–416 (1967).

    CAS  Google Scholar 

  38. L. Descarries and B. Droz, Incorporation de la noradrenaline-3H dans le système nerveux central du Rat: étude radioautographique en microscopie électronique, Compt. Rend. Acad. Sci. (Paris) 266: 2480–2482 (1968).

    CAS  Google Scholar 

  39. R. W. Young, The renewal of photoreceptor cell outer segments, J. Cell Biol. 33: 61–72 (1967).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. B. Droz, Dynamic condition of proteins in the visual cells of rats and mice as shown by radioautography with labeled amino acids, Anat. Rec. 145: 157–167 (1963).

    Article  Google Scholar 

  41. S. Flanigan, E. R. Gabrielli, and P. D. McLean, Cerebral changes revealed by radio-autography with 35S labeled-L-methionine, Arch. Neurol. Psychiat. 77: 588–594 (1957).

    Article  CAS  Google Scholar 

  42. J. Verne, B. Droz, L. Olivier, and A. Rambourg, Remarques sur l’action de la chlorpromazine sur la synthèse des protéines dans le tissu nerveux, Ann. Histochim. 7: 227–231 (1962).

    Google Scholar 

  43. J. Altman, Behavioral influences on the utilization of 3H-leucine by the brain, in Protides of the Biological Fluids (H. Peeters, ed.), Vol. 13, pp. 127–136, Elsevier, Amsterdam (1966).

    Google Scholar 

  44. R. W. Young and B. Droz, The renewal of protein in retinal rods and cones, J. Cell Biol. 39: 159–184 (1968).

    Google Scholar 

  45. B. Droz, H. L. Koenig, and R. W. Young, Radioautographie en microscopie électronique et renouvellement des protéines axonates dans les terminaisons motrices et sensitives, in Electron Microscopy (D. S. Bocciarelli, ed.), Vol. II, pp. 523–524, Tipografia Poliglotta, Vaticana, Rome (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Droz, B. (1969). Metabolic Information Derived from Radioautography. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics