Skip to main content

Nucleic Acid and Protein Metabolism of the Axon

  • Chapter
Handbook of Neurochemistry

Abstract

Several factors have contributed to the generally held notion that the axon depends wholly upon its cell body for all of its soluble and structural proteins. Historically, the nineteenth century experiments of Waller and Türck, demonstrating the importance of continuity between axon and cell body for preserving structural integrity of the axon, were perhaps most compelling in structuring subsequent thinking about the axon’s dependency. A second factor was the concept of axoplasmic flow, a proposed mechanism whereby the perikaryon supplies the axon with its metabolic needs. This was a logical hypothesis that followed directly from the studies involving axonal degeneration. Indeed, Barker states in his textbook published in 1899,(3): “To explain the influence of the cell body upon the fibre, Goldscheider has advanced a very ingenious hypothesis. He suggests that it is most probable that there is an actual transport of a material, perhaps a fermentlike substance, from the cell along the whole course of the axone to its extremity, and first through the influence of this chemical body the axone is enabled to make use for its nutrition of the material placed at its disposal in its anatomical course.” The phenomenon of axoplasmic flow is now well established, owing to the classic experiments of Weiss and co-workers that stimulated the large number of studies that followed subsequently (see Chapter 18, Vol. II of this Handbook).However, in view of the paucity of information at that time and the lapse of more than 40 years before the phenomenon was finally demonstrated, Goldscheider may be credited with having had profound intuitive insight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Austin, J. J. Bray, and R. J. Young, Transport of proteins and ribonucleic acid along nerve axons, J. Neurochem. 13: 1267–1269 (1966).

    Article  PubMed  CAS  Google Scholar 

  2. L. Austin and I. G. Morgan, Incorporation of 14C-labelled leucine into synaptosomes from rat cerebral cortex in vitro, J. Neurochem. 14: 377–387 (1967).

    Article  PubMed  CAS  Google Scholar 

  3. L. F. Barker, The Nervous System and Its Constituent Neurones, p. 307, Appleton-CenturyCrofts, New York (1899).

    Google Scholar 

  4. S. H. Barondes, Synaptic plasticity and axoplasmic transport, Neurosci. Bull. 5: 365–370 (1967).

    Google Scholar 

  5. D. H. Clouet and H. Waelsch, Recovery of cholinesterases in the frog nervous system after inhibition, in The Regional Chemistry, Physiology and Pharmacology of the Nervous System (S. S. Kety and J. Elkes, Eds.), pp. 243–247, Pergamon Press, New York (1961).

    Google Scholar 

  6. D. H. Clouet and H. Waelsch, Amino acid and protein metabolism of the brain.—VIII. The recovery of cholinesterase in the nervous system of the frog after inhibition, J. Neurochem. 8: 201–215 (1961).

    Article  PubMed  CAS  Google Scholar 

  7. B. Droz, Rate of newly synthesized proteins in neurons, in The Use of Radioautography in Investigating Protein Synthesis (C. P. Leblond, ed.), pp. 159–175, Academic Press, New York (1965).

    Google Scholar 

  8. B. Droz and C. P. Leblond, Migration of proteins along the axons of the sciatic nerve, Science 137: 1047–1048 (1962).

    Article  PubMed  CAS  Google Scholar 

  9. B. Droz and C. P. Leblond, Axonal migration of proteins along the axons of the sciatic nerve, J. Comp. Neurol. 121: 325–345 (1963).

    Article  PubMed  CAS  Google Scholar 

  10. A. Edström, The ribonucleic acid in the Mauthner neuron of the goldfish, J. Neurochem. 11:309–314(1964).

    Google Scholar 

  11. A. Edström, Effect of spinal cord transection on the base composition and content of RNA in the Mauthner nerve fibre of the goldfish, J. Neurochem. 11: 557–559 (1964).

    Article  Google Scholar 

  12. A. Edström, Amino acid incorporation in isolated Mauthner nerve fibre components, J. Neurochem. 13: 315–321 (1966).

    Article  Google Scholar 

  13. A. Edström, Inhibition of protein synthesis in Mauthner nerve fibre components by actinomycin-D, J. Neurochem. 14: 239–243 (1967).

    Article  PubMed  Google Scholar 

  14. A. Edström and J.-E. Edström, Identification and properties of RNA from Mauthner nerve fibre components of the goldfish, in Macromolecules and the Function of the Neuron (Z. Lodin and S. P. R. Rose, Eds.), pp. 103–110, Excerpta Medica, Amsterdam (1968).

    Google Scholar 

  15. J.-E. Edström, Quantitative determination of ribonucleic acid in the micro-microgram range, J. Neurochem. 3: 100–106 (1958).

    Article  PubMed  Google Scholar 

  16. J.-E. Edström, Extraction, hydrolysis and electrophoretic analysis of ribonucleic acid from microscopic tissue units (microphoresis), J. Biophys. Biochem. Cytol. 8: 39–43 (1960).

    Article  PubMed  PubMed Central  Google Scholar 

  17. J.-E. Edström, D. Eichner, and A. Edström, The ribonucleic acid of axons and myelin sheaths from Mauthner neurons, Biochim. Biophys. Acta 61: 178–184 (1962).

    PubMed  Google Scholar 

  18. M. Goldstein, Long term tissue culture of neuroblastoma.-IV. Growth differentiation and function during the development of an established line of neuroblastoma, J. Natl. Cancer Inst.,in press.

    Google Scholar 

  19. W. Grampp and J.-E. Edström, The effect of nervous activity on ribonucleic acid of the crustacean receptor neuron, J. Neurochem. 10: 725–731 (1963).

    Article  PubMed  CAS  Google Scholar 

  20. H. Grundfest, Electrophysiology and pharmacology of different components of bioelectric transducers, in Sensory Receptors, Cold Spring Harbor Symp. Quant. Biol. 30: 1–14 (1965).

    Article  PubMed  CAS  Google Scholar 

  21. H. A. Hartmann, J. Lin, and M. C. Shively, RNA of nerve cell bodies and axons after beta, beta-iminodiproprionitrile, Acta Neuropathol. 11: 275–281 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. A. L. Hodgkin, A. F. Huxley, and B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116: 424–448 (1952).

    CAS  Google Scholar 

  23. A. Hughes, The development of the neural tube of the chick embryo. A study with the ultraviolet microscope, J. Embryo!. Exptl. Morpho!. 3: 305–325 (1955).

    Google Scholar 

  24. A. Hughes and L. B. Flexner, A study of the development of cerebral cortex of the foetal guinea pig by means of the ultraviolet microscope, J. Anat. (London) 90: 386–394 (1956).

    CAS  Google Scholar 

  25. B. Jakoubek and J.-E. Edström, RNA changes in the Mauthner axon and myelin sheath after increased functional activity, J. Neurochem. 12: 845–849 (1965).

    Article  PubMed  CAS  Google Scholar 

  26. E. Koenig, Synthetic mechanisms in the axon.-I. Local axonal synthesis of acetyl-. cholinesterase, J. Neurochem. 12: 343–355 (1965).

    Article  PubMed  CAS  Google Scholar 

  27. E. Koenig, Synthetic mechanisms in the axon.-II. RNA in myelin-free axons of the cat, J. Neurochem. 12: 357–361 (1965).

    Article  PubMed  CAS  Google Scholar 

  28. E. Koenig, Synthetic mechanisms in the axon.-III. Stimulation of acetylcholinesterase by actinomycin-D in the hypoglossal nerve, J. Neurochem. 14: 429–435 (1967).

    Article  PubMed  CAS  Google Scholar 

  29. E. Koenig, Synthetic mechanisms in the axon.-IV. In vitro incorporation of 3H-precursors into axonal protein and RNA, J. Neurochem. 14:437 ‘I46 (1967).

    Google Scholar 

  30. E. Koenig, Intrinsic protein synthesizing mechanisms in the axon as bases for renewal and local functional differentiation of membrane, in Macromolecules and the Function of the Neuron (Z. Lodin and S. P. R. Rose, Eds.), pp. 121–128, Excerpta Medica, Amsterdam (1968).

    Google Scholar 

  31. E. Koenig, A method for determining total protein of isolated cellular elements and corresponding tritium radioactivity, J. Cell. Biol. 38: 562–573 (1968).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. E. Koenig and G. B. Koelle, Acetylcholinesterase regeneration in peripheral nerve after irreversible inactivation, Science 132: 1249–1250 (1960).

    Article  PubMed  CAS  Google Scholar 

  33. E. Koenig and G. B. Koelle, Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation, J. Neurochem. 8: 169–188 (1961).

    Article  PubMed  CAS  Google Scholar 

  34. J. A. Nurnberger, B. Edström, and B. Lindström, A study of the ventral horn cells of the adult cat by two independent cytochemical microabsorption techniques, J. Cell. Comp. Physiol. 39: 215–251 (1952).

    Article  CAS  Google Scholar 

  35. S. L. Palay and G. E. Palade, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1: 69–88 (1955).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. C. H. Sawyer, Cholinesterase in degenerating and regenerating peripheral nerve, Am. J. Ph ysiol. 146: 246–253 (1946).

    CAS  Google Scholar 

  37. K. Schaffer, Kurze Anmerkung über die morphologische Differenz des Axencylinders im Verhältnisse zu den protoplasmatischen Fortsatzen bei Nissl’s Färbung, Neurol. Centralbl. (Leipzig) 12: 849–851 (1893).

    Google Scholar 

  38. M. Singer and M. M. Salpeter, Transport of tritium-labelled 1-histidine through the Schwann and myelin sheaths into the axon of peripheral nerves, Nature 210: 1225–1227 (1966).

    Article  PubMed  CAS  Google Scholar 

  39. M. Singer and M. M. Salpeter, The transport of 3H-1-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function, J. Morphol. 120: 281–315 (1966).

    Article  PubMed  CAS  Google Scholar 

  40. P. Weiss and F. Rossetti, Growth responses of opposite sign among different neuron types exposed to thyroid hormone, Proc. Natl. Acad. Sci. (U.S.) 37: 540–556 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koenig, E. (1969). Nucleic Acid and Protein Metabolism of the Axon. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics