Skip to main content

Mechanisms of Dendritic Tree Development in Mammalian Retinal Ganglion Cells

  • Chapter
The Visual System from Genesis to Maturity

Abstract

In the adult mammalian retina, several classes of ganglion cells have been described based on morphological parameters such as dendritic field size, soma size, and the pattern of dendritic branching (Boycott and Wässle, 1974; Kolb et al., 1981; Rodieck, 1983; Wässle and Boycott, 1991). Furthermore, some of the morphologically defined classes also display distinctive electrophysiological properties (Fukuda et al., 1984; Saito, 1983). In the retina of the cat, one of the best studied models, alpha and beta classes have been examined in detail. Alpha cells display large somata and dendritic trees, while beta cells have medium-sized somata and the smallest dendritic trees of any class (Boycott and Wässle, 1974). In addition, the dendritic trees of beta cells are more highly branched than those of alpha cells. In the retina of other mammals, ganglion cells have been described that share with alpha cells some of their distinctive features. Type I cells in the rat’s retina, for example, resemble alpha cells in that they display large dendritic trees and large somata. Other ganglion cells found in the rat’s retina include type II cells, which have small-to-medium size somata and small, highly branched dendritic trees studded with spines (Perry, 1979), and type III cells, which are characterized by large, sparsely branched dendritic trees and the smallest somata among retinal ganglion cells (RGCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aizenman E, Frosch MP, Lipton SA (1988): Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat. J Physiol (Lond) 396:75–91.

    Google Scholar 

  • Bloomfield SA, Hitchcock PF (1991): Dendritic arbors of large-field ganglion cells show scaled growth during expansion of the goldfish retina: A study of morphometric and electrotonic properties. J Neurosci 11:910–917.

    Google Scholar 

  • Boycott BB, Wassle H (1974): The morphological types of ganglion cells of the domestic cat’s retina. J Physiol (Lond.) 240:397–420.

    Google Scholar 

  • Bunt SM, Lund RD, Land PW (1983): Prenatal development of the optic projection in albino and hooded rats. Dev Brain Res 6:149–168.

    Article  Google Scholar 

  • Dann JF, Buhl EH, Peichl L (1987): Dendritic maturation in cat retinal ganglion cells: A Lucifer Yellow study. Neurosci Lett 80:21–26.

    Article  Google Scholar 

  • Dann JF, Buhl EH, Peichl L (1988): Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J Neurosci 8:1485–1499.

    Google Scholar 

  • Dubin MW, Stark LA, Archer SM (1986): A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J Neurosci 6:1021–1036.

    Google Scholar 

  • Fukuda Y, Hsiao C, Watanabe M, Ito H (1984): Morophological correlates of physiologically identified Y-,X-, and W-cells in the cat retina. J Neurophysiol 52:999–1013.

    Google Scholar 

  • Galli L, Maffei L (1988): Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–91.

    Article  Google Scholar 

  • Hamilll OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981): Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100.

    Article  Google Scholar 

  • Huettner JE, Bean BP (1988): Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels. Proc Natl Acad Sci USA 85:1307–1311.

    Article  Google Scholar 

  • Jacobson M (1991): Developmental Neurobiology. New York: Plenum Press.

    Book  Google Scholar 

  • Jahr CE, Stevens CF (1987): Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525.

    Article  Google Scholar 

  • Kolb HR, Nelson R, Mariani A (1981): Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Res 21:1081–1114.

    Article  Google Scholar 

  • Lankford KL, DeMello FG, Klein WL (1988): Dl dopamine receptors inhibit growth cone motility in cultured retina neurons: Evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sci USA 85:2839–2843.

    Article  Google Scholar 

  • Lipton SA (1986): Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Natl Acad Sci U S A 83:9774–9778.

    Article  Google Scholar 

  • Lipton SA, Aizenman E, Loring RH (1987): Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflugers Arch 410:37–43.

    Article  Google Scholar 

  • Lipton SA, Frosch MR, Phillips MD, Tauck DL, Aizenman E (1988): Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture. Science 239:1293–1296.

    Article  Google Scholar 

  • Lipton SA, Kater SB (1989): Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12:265–269.

    Article  Google Scholar 

  • Maslim J, Stone J (1986): Synaptogenesis in the retina of the cat. Brain Res 373:35–48.

    Article  Google Scholar 

  • Maslim J, Webster M, Stone J (1986): Stages in the structural differentiation of retinal ganglion cells. J Comp Neurol 254:383–402.

    Article  Google Scholar 

  • Meister M, Wong ROL, Baylor DA, Shatz CJ (1991): Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943.

    Article  Google Scholar 

  • O’Leary DDM, Fawcett JW, Cowan WW (1986): Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J Neurosci 6:3692–3705.

    Google Scholar 

  • Perry VH (1979): The ganglion cell layer of the retina of the rat: A Golgi study. Proc R Soc Lond(Biol) 204:363–375.

    Article  Google Scholar 

  • Perry VH, Walker M (1980): Morphology of cells in the ganglion cell layer during development of the rat retina. Proc R Soc London (Biol) 208:433–445.

    Article  Google Scholar 

  • Ramoa AS, Albuquerque EX (1988): Phencyclidine and some of its analogues have distinct effects on NMD A receptors of rat hippocampal neurons. FEBS Lett 235:156–162.

    Article  Google Scholar 

  • Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande SS, Wonnacott S, Aronstam RS, Albuquerque EX (1990): The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Therap 254:71–82.

    Google Scholar 

  • Ramoa AS, Campbell G, Shatz CJ (1987): Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science 237:522–525.

    Article  Google Scholar 

  • Ramoa AS, Campbell G, Shatz CJ (1988a): Dendritic growth and remodelling of cat retinal ganglion cells during fetal and postnatal development. J Neurosci 8:4239–4261.

    Google Scholar 

  • Ramoa AS, Deshpande SS, Albuquerque EX (1988b): Development of chemosensitivity and action potential activity in retinal ganglion cells of the rat. Soc Neurosci Abstr 14:460.

    Google Scholar 

  • Ramon Y, Cajal S (1909/1911): Histologie du systeme nerveux de l’homme et des vertebres, 2 vols., Azoulay L, trans. Reprint Madrid: Instituto Ramon Y Cajal.

    Google Scholar 

  • Rauschecker JP (1991): Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol Rev 71:587–615.

    Google Scholar 

  • Rocha M, Ramoa A, Hahm J, Sur M (1991): NMDA antagonist infusion during ON/OFF sublaminar segregation alters dendritic morphology of cells in ferret LGN. Soc Neurosci Abstr 17:1136.

    Google Scholar 

  • Rodieck RW, Brening RK (1983): Retinal ganglion cells: Properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol 23:121–164.

    Article  Google Scholar 

  • Rusoff AC, Dubin MW (1977): Development of receptive field properties of retinal ganglion cells in kittens. J Neurophysiol 40:1188–1198.

    Google Scholar 

  • Saito HA (1983): Morphology of physiologically identified X-,Y-and W-type retinal ganglion cells of the cat. J Comp Neurol 221:279–288.

    Article  Google Scholar 

  • Sakaguchi DS, Murphey RK, Hunt RK, Tompkins R (1984): The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: A morphological study utilizing intracellular dye injections. J Comp Neurol 224:231–251.

    Article  Google Scholar 

  • Spivak CE, Witkop B, Albuquerque EX (1980): Anatoxin-a: A novel, potent agonist at the nicotinic receptor. Mol Pharmacol 18:384–394.

    Google Scholar 

  • Sretavan DW, Shatz CJ, Styker MP (1988): Modification of retinal ganglion cell morphology by prenatal infusion of tetrodotoxin. Nature 336:468–471.

    Article  Google Scholar 

  • Wässle H, Boycott BB (1991): Functional architecture of the mammalian retina. Physiol Rev 71:447–480.

    Google Scholar 

  • Wingate RJT, Thompson ID (1991): Postnatal dendritic modification in an identified population of hamster retinal ganglion cells. Soc Neurosci Abstr 17:559.

    Google Scholar 

  • Wong ROL (1990): Differential growth and remodeling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Nenrol 294:109–132.

    Article  Google Scholar 

  • Wong ROL, Herrman K, Shatz CJ (1991): Remodeling of retinal ganglion cell dendrites in the absence of action potential activity. J Neurobiol 22:685–697.

    Article  Google Scholar 

  • Yamasaki EN, Ramoa AS (1990): Dendritic development of abnormally projecting rat retinal ganglion cells. Soc Neurosci Abstr 16:334.

    Google Scholar 

  • Yamasaki EN, Ramoa AS (1992): Dendritic remodeling of rat retinal ganglion cells during development. Submitted for publication.

    Google Scholar 

  • Yamasaki EN, Rocha MS, Ramoa AS (1989): Morphology of rat retinal ganglion cells during fetal and postnatal development. Soc Neurosci Abstr 15:455.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramoa, A.S., Yamasaki, E.N. (1992). Mechanisms of Dendritic Tree Development in Mammalian Retinal Ganglion Cells. In: Lent, R. (eds) The Visual System from Genesis to Maturity. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6726-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6726-8_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6728-2

  • Online ISBN: 978-1-4899-6726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics