Skip to main content

Columnar Organization of Primate Visual Cortex

  • Chapter
The Visual System from Genesis to Maturity

Abstract

Most developmental studies of visual system functional organization have concentrated, quite sensibly, on areas in which the adult organization was already well understood. In vertebrates, these include the ocular dominance, orientation and retinotopic maps in mammalian visual cortex, and the retinotopy (and in experimental preparations, the ocular segregation) in frog optic tectum. Developmental aspects of these topics are covered elsewhere in this volume. Here we review the wealth of new data on the functional architecture of monkey visual cortex, a system particularly ripe for future developmental enquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allman J (1988): Variations in visual cortex organization in primates. In: Neurobiology of Neocortex, Rakic P, Singer W, eds.

    Google Scholar 

  • Barlow HB (1986): Why have multiple cortical areas? Vision Res 26:81–90.

    Article  Google Scholar 

  • Blasdel GG, Fitzpatrick D (1984): Physiological organization of layer 4 in macaque striate cortex. J Neurosci 4:880–895.

    Google Scholar 

  • Blasdel GG, Salama G (1986): Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585.

    Article  Google Scholar 

  • Born RT, Tootell RBH (1991a): Spatial frequency tuning of single units in macaque supragranular striate cortex. Proc Natl Acad Sci USA 88:7066–7070.

    Article  Google Scholar 

  • Born RT, Tootell RBH (1991b): Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. Proc Natl Acad Sci USA 88:7071–7075.

    Article  Google Scholar 

  • Brodman K (1905): Beitrage zur histologischen lokalisation der Grosshirnrinde. J Psychol Neurol 6:275–400.

    Google Scholar 

  • Cowey A (1979): Cortical maps and visual perception: The Grindley Memorial Lecture. Q J Exp Psychol 31:1–17.

    Article  Google Scholar 

  • DeYoe EA, Van Essen DC (1988): Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226.

    Article  Google Scholar 

  • Dow BM (1974): Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurosphsiol 37:927–946.

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991): Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex 1:1.

    Article  Google Scholar 

  • Garey LJ (1971): A light and electron microscopic study of the visual cortex of the cat and monkey. Proc R Soc Lond (Biol) 21-40.

    Google Scholar 

  • Gennari F (1782): De peculiari structura cerebri nonnullisque eius morbis. Paucae aliae anatom. observat, accendunt. Parma, Italy.

    Google Scholar 

  • Gilbert CD (1977): Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol (Lond) 288:391–421.

    Google Scholar 

  • Gilbert CD, Wiesel TN (1989): Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442.

    Google Scholar 

  • Hawken MJ, Parker AJ, Lund JS (1988): Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J Neurosci 8:3541–3548.

    Google Scholar 

  • Horton JC, Hubel DH (1981): Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764.

    Article  Google Scholar 

  • Hubel DH, Livingstone ML (1987): Segregation of form, color and stereopsis in primate area 18. J Neurosci 7:3378–3315.

    Google Scholar 

  • Hubel DH, Wiesel TN (1968): Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond) 195:215–243.

    Google Scholar 

  • Hubel DH, Wiesel TN (1970): Cells sensitive to binocular depth in area 18 of the macaque monkey visual cortex. Nature 225:41–42.

    Article  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1978): Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177:361–380.

    Article  Google Scholar 

  • Kaas J, Heurta MF, Weber JT, Halting JK (1978): Pattern of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J Comp Nenrol 182:517–554.

    Article  Google Scholar 

  • Livingstone MS, Huhel DH (1984a): Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356.

    Google Scholar 

  • Livingstone MS, Hubel DH (1984b): Specificity of intrinsic connections in primary visual cortex. J Neurosci 4:2830–2835.

    Google Scholar 

  • Livingstone MS, Hubel DH (1987): Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey. J Neurosci 7:3371–3377.

    Google Scholar 

  • Livingstone M, Hubel DH (1988): Segregation of form, color, movement and depth: Anatomy, physiology and perception. Science 240:740–749.

    Article  Google Scholar 

  • Lund JS, Boothe RG (1975): Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J Comp Neurol 159:305–334.

    Article  Google Scholar 

  • Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975): The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164:287–304.

    Article  Google Scholar 

  • Maunsell JHR, Van Essen DC (1983): The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586.

    Google Scholar 

  • Rockland KS, Pandya DN (1981): Cortical connections of the occipital lobe in the rhesus monkey: Interactions between areas 17,18,19, and the superior temporal sulcus. Brain Res 212:249–270.

    Article  Google Scholar 

  • Tootell RBH, Born RT (1990): Columns beyond V1 and V2 in macaque visual cortex: A double-label deoxyglucose study. Soc Neurosci Abstr 16:292.

    Google Scholar 

  • Tootell RBH, Born RT (1991): Architecture of primate area MT. Soc Neurosci Abstr 17:524.

    Google Scholar 

  • Tootell RBH, Hamilton SL (1989): Functional anatomy of the second cortical visual area (V2) in the macaque. J Neurosci 9:2620–2644.

    Google Scholar 

  • Tootell RBH, Hamilton SL, Silverman MS, Switkes E (1988a): Functional anatomy of macaque striate cortex: 1. Ocular dominance, binocular interactions and baseline conditions. J Neurosci 8:1500–1530.

    Google Scholar 

  • Tootell RBH, Switkes E, Silverman MS, Hamilton SL (1988b): Functional anatomy of macaque striate cortex: 2. Retinotopic organization. J Neurosci 8:1531–1568.

    Google Scholar 

  • Tootell RBH, Silverman MS, Hamilton SL, De Valois RL, Switkes E (1988c): Functional anatomy of macaque striate cortex: 3. Color. J Neurosci 8:1569–1593.

    Google Scholar 

  • Tootell RBH, Hamilton SL, Switkes E (1988d): Functional anatomy of macaque striate cortex: 4. Contrast and magno-parvo streams. J Neurosci 8:1594–1609.

    Google Scholar 

  • Tootell RBH, Silverman MS, Hamilton SL, Switkes E, De Valois RL (1988e): Functional anatomy of macaque striate cortex: 5. Spatial frequency. J Neurosci 8:1610–1624.

    Google Scholar 

  • Tootell RBH, Silverman MS, DeValois RL, Jacobs GH (1983): Functional organization of the second cortical visual area of primates. Science 220:737–739.

    Article  Google Scholar 

  • Ts’o DY, Gilbert CD (1988): The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727.

    Google Scholar 

  • Van Essen DC, Maunsell JH (1980): Two-dimensional maps of the cerebral cortex. J Comp Neurol 191:255–281.

    Article  Google Scholar 

  • Vicq-d’Azyr R (1786): Traité d’anatomie et de physiologie. Paris: F.A-Didot.

    Google Scholar 

  • Zeki SM (1978): Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol 277:273–290.

    Google Scholar 

  • Zeki SM (1983): The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond (Biol) 217:449–470.

    Article  Google Scholar 

  • Zeki SM, Shipp S (1988): The functional logic of cortical connections. Nature 335:311–317.

    Article  Google Scholar 

  • Zeki SM, Shipp S (1989): Modular connections between areas V2 and V4 of macaque monkey visual cortex. Eur J Neurosci 1:494–506.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tootell, R.B.H., Born, R.T. (1992). Columnar Organization of Primate Visual Cortex. In: Lent, R. (eds) The Visual System from Genesis to Maturity. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6726-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6726-8_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6728-2

  • Online ISBN: 978-1-4899-6726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics