Skip to main content
  • 867 Accesses

Abstract

Let Ω be a domain in R N, N ≥ 2, whose boundary ∂Ω is of class C 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierre Simon, Marquis de Laplace, 1749–1827; author of Traité de Mécanique céleste, (17991825). Also known for the frequent use of the phrase “il est aisé de voir, which has unfortunately become all too popular in modern mathematical writings.

    Google Scholar 

  2. The same equation had been introduced, in the context of potential fluids, by Joseph Louis, Compte de Lagrange, 1736–1813, author of Traité de Mécanique Analytique, (1788).

    Google Scholar 

  3. See Section 2 of the Preliminaries.

    Google Scholar 

  4. Gustav Peter Lejeune Dirichlet, 1805–1859.

    Google Scholar 

  5. Carl Gottfried Neumann, 1832–1925.

    Google Scholar 

  6. See Section 5 of Chapter I.

    Google Scholar 

  7. Jacques Hadamard, 1865–1963. A first discussion on ill-posed problems is in J. Hadamard, Sur les problèmes aux derivées partielles et leur signification physique, Bull. Univ. Princeton, #13 (1902), pp. 49–52. The example is taken from J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1952.

    Google Scholar 

  8. The orientation of the vectors n(y) is arbitrary but fixed so that the function y-+ n(y) is continuous foryE E.

    Google Scholar 

  9. George Green, 1793–1841, George Gabriel Stokes, 1819–1903.

    Google Scholar 

  10. Introduced by Green in G.Green, An Essay on the Applications of Mathematical Analysis to the Theories of Electricity and Magnetism Nottingham, 1828.

    Google Scholar 

  11. Simeon Denis Poisson, 1781–1840.

    Google Scholar 

  12. See 4.1 of the Complements.

    Google Scholar 

  13. See 4.1 of the Complements.

    Google Scholar 

  14. A convex function defined in some interval [a, b], is continuous in (a, b). See Lemma 6.2c of the Complements of Chapter IV.

    Google Scholar 

  15. Johan Ludwig William Valdemar Jensen, 1859–1925. See 4.13 of the Complements.

    Google Scholar 

  16. Alex Harnack, 1851–1888; A. Harnack, Grundlagen der Theorie des logarithmischen Potentials, Leipzig, 1887.

    Google Scholar 

  17. Joseph Liouville, 1809–1882.

    Google Scholar 

  18. See Section 9.1 of Chapter I.

    Google Scholar 

  19. O. Perron, Eine neun Behandlung der Randewertaufgabe für Au = 0. Math. Z. #18 (1923) pp. 42–54.

    Google Scholar 

  20. See 5.5 of the Complements.

    Google Scholar 

  21. See 7.1 of the Complements.

    Google Scholar 

  22. Henri Léon Lebesgue, 1875–1941; H.L. Lebesgue, Sur des cas d’impossibilité du problème de Dirichlet, Comptes Rendus Soc. Math. de France, (1913), pp. 17. H.L. Lebesgue, Conditions de régularité, conditions d’irrégularité, conditions d’im possibilité dans le le problème de Dirichlet, Comptes Rendus Acad. Sci. Paris, Vol. 178 (1924,I), pp. 349–354. A spectrum of contributions of H. Lebesgue to the classical solvability of the Dirichlet problem is in OEuvres Scientifiques de H. L. Lebesgue, Inst. Math. Univ. de Gèneve, Gèneve 1975, Vol. I, Chap. V. A clear discussion on the role played by the local behavior of d S2 in the classical solvability of the Dirichlet problem is given by N. Wiener, Une condition nécessaire et suffisante de possibilité pour le problème de Dirichlet, Comptes Rendus Acad. Sci. Paris, Vol. 178 (1924), pp. 1050–1054 (présentée par M.H. Lebesgue). This note is a summary of a more complete investigation, i.e., N. Wiener, The Dirichlet Problem, J. Math. Phys. #3, (1924), pp. 127–147. Also in, Collected papers of Norbert Wiener, with contributions of Y.W. Lee, N. Levinson and W.T. Martin, SIAM, Philadelphia and the M.I.T. Press, Cambridge MA, 1965, pp. 361–371.

    Google Scholar 

  23. See 7.2 of the Complements.

    Google Scholar 

  24. See also 5.7 of the Complements.

    Google Scholar 

  25. See 8.1 of the Complements.

    Google Scholar 

  26. See 9.1 and 9.2 of the Complements.

    Google Scholar 

  27. Guido Fubini, 1879–1943. G. Fubini, Sugli integrali multipli, Rend. Accad. Lincei Roma, Vol. 16 (1907), pp. 608–614. See also Opere Scelte di Guido Fubini, a cura dell’U.M.I., Ed. Cremonese, Roma 1957, Vol.3 page 53.

    Google Scholar 

  28. See 10.1 of the Complements.

    Google Scholar 

  29. See 11.1 of the Complements.

    Google Scholar 

  30. See 4.12 of the Complements. For a proof see Lemma 9.2 of Chapter III.

    Google Scholar 

  31. See 12.1 of the Complements.

    Google Scholar 

  32. See Kellogg, [19], p. 22 and p. 193.

    Google Scholar 

  33. The sufficient part of the theorem is due to Newton. The necessary part in the space dimension N = 2 is in P. Dive, Attraction d’ellipsoides homogènes et réciproque d’un théorème de Newton, Bull. Soc. Math. France, #59 (1931), pp. 128–140. The necessary condition for N> 3 is in E. DiBenedetto and A. Friedman, Bubble growth in porous media, Indiana Univ. Math. J. Vol. 35 #3 (1986), pp. 573–606. The assumption of uniform distribution cannot be removed as shown in H. Shangolian, On the Newtonian potential of a heterogeneous ellipsoid, SIAM J. Math. Anal., Vol. 22 #5 (1991), pp. 1246–1255.

    Google Scholar 

  34. See N.S. Krylov, Controlled Diffusion Processes, Springer-Verlag, Series Applications of Mathematics #14, New York, 1980.

    Google Scholar 

  35. For information on harmonic polynomials and spherical harmonics see E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co., New York, 1965.

    Google Scholar 

  36. This follows from the characteristic condition of holomorphy, i.e., the Cauchy—Riemann equations. See Cartan, [2] pp. 124–125.

    Google Scholar 

  37. J. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. #30 (1906), pp. 175–193. The inequality still holds if dy/ISZI is replaced by any Radon measure such that fa = 1. In the case of a discrete measure, the inequality had been established by Hölder in O. Hölder, Über einen Mittelwertsatz, Göttingen Nachr. (1889), pp. 38–47.

    Google Scholar 

  38. This fact is intuitive and it can be proved using Lemma 6.1c of the Complements of Chapter IV.

    Google Scholar 

  39. F. Riesz, Sur les fonctions subharmoniques at leur rapport à la théorie du potentiel, Part I and II, Acta Math. Vol. 48, (1926), pp. 329–343., and ibid., Vol. 54, (1930), pp. 321–360.

    Google Scholar 

  40. See F. Riesz cited above and also T. Rado, Subharmonic Functions, Chelsea Pub. Co., New York.

    Google Scholar 

  41. See Hörmander, An Introduction to Complex Analysis in Several Variables D.Van Nostrand Co. Inc., Princeton, New Jersey, 1966, page 16.

    Google Scholar 

  42. Brook Taylor, 1685–1731.

    Google Scholar 

  43. J.B. Serrin, On the Phragmen-Lindelöf principle for elliptic differential equations. J. Rat. Mech. Anal. #3 (1954) pp. 395–413.

    Google Scholar 

  44. See footnote #6.

    Google Scholar 

  45. See Problem 4.4.

    Google Scholar 

  46. D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. d’Analyse Math. #4 (1955), pp. 309–340.

    Google Scholar 

  47. Norbert Wiener, 1894–19M; N.Wiener, Certain notions in potential theory, J. Math. Phys. Mass. Inst. Tech. Vol. III, pp. 24–51, (1924).

    Google Scholar 

  48. William Thomson Kelvin, 1824–1907; W. Thomson Kelvin, Extraits de deux lettres adressées à M. Liouville, J. de Mathématiques Pures et Appliquées Vol. 12 (1847), pp. 256.

    Google Scholar 

  49. This is a particular case of general estimates proved by Julius Pawel Schauder, 1899–1943, in J.P. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. #38, (1934), pp. 257–282; J.P. Schauder, Numerische Abschatzungen in elliptischen linearen Differentialgleichungen, Studia Math. #5, (1935), pp. 34–42. A version of these estimates is in [12] and [21]. Their parabolic counterpart is in [8] and [22].

    Google Scholar 

  50. Godfrey Harold Hardy, 1877–1947.

    Google Scholar 

  51. COMPLEMENT: IO. POTENTIAL ESTIMATES IN LP(Q) & HARDY’S INEQUALITY 113

    Google Scholar 

  52. See Section 4.3 of the Complements of the Preliminaries.

    Google Scholar 

  53. A.P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. #88 (1952), pp. 85–139. See also E. Stein [34]; Anthony Zygmund, 1900–1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiBenedetto, E. (1995). The Laplace Equation. In: Partial Differential Equations. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2840-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2840-5_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-2842-9

  • Online ISBN: 978-1-4899-2840-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics