Skip to main content

Synthesis and Evaluation of Polyhydroxamate Chelators for Selective Actinide Ion Sequestration

  • Chapter
Separations of f Elements

Abstract

The overall goal of our research program is to design, synthesize and evaluate organic chelators for the specific binding/removal of actinides in a variety of environmentally relevant situations. Such chelators would be useful to selectively remove actinide ions such as plutonium from a variety of waste forms including soils and waste streams. We have identified a new class of polyhydroxamates as potential chelating agents for actinides based on computer modeling, solubility properties and other important features including ease of synthesis. Several members of this class of tetrahydroxamate chelators have been synthesized in our laboratory and evaluated for the binding of actinides and other metal ions in solution. Some of the hydroxamate chelators that we have developed have also been evaluated for their plutonium(IV) binding and the results are very encouraging. Detailed studies of the complexation behavior of this class of chelators are currently in progress and the goal of these experiments is to develop an understanding of the efficiency and nature of the metal complexation chemistry. This in turn should allow the further modification of this class of chelators to obtain agents with higher specificity for the actinide ions.

Another major goal of this program is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. Selected ligands from our ongoing efforts are being incorporated into polymeric backbones to be evaluated for their abilities to selectively remove the target metal ions from process waste streams. The synthesis of some chelating polymers and results of their preliminary evaluation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlin, R. E. and C. C. Stanton. “Radioactive Waste Management”, John Wiley: ew York, 1989.

    Google Scholar 

  2. U. S. Department of Energy Office of Environmental Restoration and Waste Management, DOE/EM-0109P, February 1994.

    Google Scholar 

  3. A. S. Gopalan, V. J. Huber, and H. K. Jacobs, in Waste Management: From Risk to Remediation. R. Bhada Ed., ECM, in press and references cited therein.

    Google Scholar 

  4. R.D. Hancock and A.E. Martell, Chem. Rev., 89, 1875, (1989).

    Article  CAS  Google Scholar 

  5. K. N. Raymond, G. E. Freeman, and M. J. Kappel, Inorg. Chim. Acta, 94, 193, (1984).

    Article  CAS  Google Scholar 

  6. M. Streater, P.D. Taylor, R.C. Hider, and J. Porter, J. Med. Chem., 33, 1749, (1990).

    Article  CAS  Google Scholar 

  7. P.S. Dobbin, and R.C. Hider, Chemistry in Britain, 565, (1990).

    Google Scholar 

  8. G. Wilkinson, R. D. Gillard and J. A. McLeverty, Eds. Comprehensive Coordination Chemistry, Pergamon Pres: NY, 1987, Vol 1-6.

    Google Scholar 

  9. K. N. Raymond and P. W. Durbin, Proceedings of the First Hanford Separation Science Workshop, July 23–25, 1991, Richland Washington, II.15, (1993).

    Google Scholar 

  10. P. Yakirevitch; N. Rochel, A. M. Albrecht-Gary; J. Libman, and A. Shanzer, Inorg. Chem. 32, 1779, (1993).

    Article  CAS  Google Scholar 

  11. K. N. Raymond and T. M. Garrett, Pure and Appl. Chem. 60, 1807, (1988).

    Article  CAS  Google Scholar 

  12. M.J. Miller, Chem. Rev., 89, 1563, (1989).

    Article  CAS  Google Scholar 

  13. W. L. Smith and K. N. Raymond, J. Am. Chem. Soc, 103, 3341, (1981).

    Article  CAS  Google Scholar 

  14. R.J. Bergeron, S.J. Kline, J.D. Navratil, and C.M. Smith, Radiochimica Acta, 35, 47 (1984).

    CAS  Google Scholar 

  15. F.L. Weitl, K.N. Raymond, W.L. Smith, and J.R. Howard, J. Am. Chem. Soc, 100, 1170, (1978).

    Article  CAS  Google Scholar 

  16. F.L. Weitl and K.N. Raymond, J. Am. Chem. Soc, 102, 2289, (1980).

    Article  CAS  Google Scholar 

  17. M. J. Kappel, H. Nitsche, and K. N. Raymond, Inorg. Chem. 24, 605, (1985).

    Article  CAS  Google Scholar 

  18. L. C. Uhlir, P. W. Durbin, N. Jeung, and K. N. Raymond, J. Med. Chem., 36, 504, (1993).

    Article  CAS  Google Scholar 

  19. J. Xu, T. D. P. Stack, and K. N. Raymond, Inorg. Chem., 31, 4903, (1992).

    Article  CAS  Google Scholar 

  20. A. Hou, D. W. Whisenhunt, Jr., J. Xu, and K. N. Raymond, J. Am. Chem. Soc. 116, 840, (1994).

    Article  CAS  Google Scholar 

  21. A. Gopalan, O. Zincircioglu and P. Smith, Radioactive Waste Management and the Nuclear Fuel Cycle Journal, 17/3-4, 161, (1993).

    Google Scholar 

  22. W. R. Harris and K. N. Raymond, J. Am. Chem. Soc, 101, 6534, (1979).

    Article  CAS  Google Scholar 

  23. A. E. Martell, R. M. Smith, and R. J. Motekaitis. NIST Critical Stabilitiy Constants of Metal Complexes Database. 1993.

    Google Scholar 

  24. A. Gopalan, V. Huber, O. Zincircioglu, and P. Smith, J. Chem. Soc, Chem. Commun., 1266, (1992).

    Google Scholar 

  25. J. M. Cleveland, The Chemistry of Plutonium, Gordon and Beach: New York, 1970.

    Google Scholar 

  26. J. J. Katz, G. T. Seaborg and L. R. Morss, Eds. The Chemistry of the Actinide Elements. 2nd Edition, Chapman and Hall: London, 1986.

    Book  Google Scholar 

  27. The iron and plutonium hydrolysis constants (MOH) were not used in the determination of the metal-ligand binding constants or subsequent calculations. Spectrophotometric data did not indicate the presence of these species in detectable concentrations.

    Google Scholar 

  28. Y. Sun and A. E. Martell, Tetrahedron, 46, 2725, (1990).

    Article  CAS  Google Scholar 

  29. S. Konetschny-Rapp, G. Jung, K. N. Raymond, J. Meiwes and H. Zähner, J. Am. Chem. Soc, 114, 2224, (1992).

    Article  CAS  Google Scholar 

  30. C. Y. Ng, S. J. Rodgers and K. N. Raymond, Inorg. Chem. 28, 2062, (1989).

    Article  CAS  Google Scholar 

  31. N. M. Koshti, H. K. Jacobs, P. A. Martin, P. H. Smith, and A. S. Gopalan, Tetrahedron Lett, 35, 5157, (1994).

    Article  CAS  Google Scholar 

  32. N. Koshti, V. Huber, P. Smith, and A. S. Gopalan, Tetrahedron, 50, 2657, (1994).

    Article  CAS  Google Scholar 

  33. D.C. Sherrington and D. Hodge, Eds. Synthesis and Separation Using Functional Polymers, John Wiley: NY, 1988.

    Google Scholar 

  34. A. Warshawsky, Ion Exchange and Sorption Processes in Hydrometallurgy, M. Streat and D. Naden, Eds., John Wiley: NY, 1987, pp 166–225.

    Google Scholar 

  35. C. Kantipuly, S. Katragadda, A. Chow, and H.D. Gesser, Talanta, 37, 491, (1990).

    Article  CAS  Google Scholar 

  36. K. Geckler, G. Lange, H. Eberhardt, and E. Bayer, Pure and Appl. Chem., 52, 1883, (1980).

    Article  Google Scholar 

  37. C. Calmon, J. Am. Water. Work Assc, 73, 652, (1981).

    CAS  Google Scholar 

  38. P. Hodge and D. C. Sherrington, Eds. Polymer-supported Reactions in Organic Synthesis, John Wiley: NY, 1980.

    Google Scholar 

  39. E. Marechal, Comprehensive Polymer Science, G. C. Eastmond, A. Ledwith, S. Russo, and P. Sigwalt, Eds., Pergamon Press: NY, 1989, Vol. 6, pp 1–47.

    Chapter  Google Scholar 

  40. F. G. Thorpe, New Methods of Polymer Synthesis, J. R. Ebdon, Ed., Blackie & Son Ltd.: ondon, 1991, pp 139–161.

    Google Scholar 

  41. T. Hirotsu, S. Katoh, K. Sugasaka, M. Sakuragi, K. Ichimura, Y. Suda, M. Fujishima, Y. Abe and T. Misonoo, J. Polym. Sci. Part A: Polym. Chem. 24, 1953, (1986).

    Article  CAS  Google Scholar 

  42. F. Vernon, Pure and Appl. Chem., 54, 2151, (1982).

    Article  CAS  Google Scholar 

  43. C. Y. Liu, M. J. Chen, N. M. Lee, H. C. Hwang, S. T. Jou and J. C. Hsu, Polyhedron, 11, 551, (1992).

    Article  CAS  Google Scholar 

  44. A. S. Gopalan, P. Smith, G. Jarvinen and D. Ford, unpublished results.

    Google Scholar 

  45. The effect of metal ion hydrolysis on the shapes of these titration curves has not yet been determined.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gopalan, A. et al. (1995). Synthesis and Evaluation of Polyhydroxamate Chelators for Selective Actinide Ion Sequestration. In: Nash, K.L., Choppin, G.R. (eds) Separations of f Elements. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1406-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1406-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1408-8

  • Online ISBN: 978-1-4899-1406-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics