Skip to main content

Epidermal Growth Factor and Transforming Growth Factor-α

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

Since its discovery in 1963 as a polypeptide that accelerated the in vivo maturation of epithelial tissues (Cohen and Elliott, 1963), epidermal growth factor (EGF) has been assumed to be important in regulating epidermal growth, differentiation, and repair. Over the last 30 years, the concepts inherent to EGF and its related growth factors have merged with that of lymphokines, interferons, and cytokines to become synonymous with small peptide factors that regulate multiple functions of cells and tissues. The regulatory signals induced by binding of soluble and matrix protein-bound growth factors/cytokines to specific receptors is termed signal transduction. Although in vitro and in vivo biochemical and genetic studies of signal transduction are unfolding at a rapid pace, these complex signaling mechanisms have not yet been evaluated in the more complicated milieu within cutaneous wounds. To provide an appropriate background for this chapter on EGF and its common factors involved in wound healing, a brief description of this expanding family of EGF-like molecules, their cellular interactions, and emerging signal transduction mechanisms is described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M., and Sporn, M. B., 1983, Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization, J. Biol. Chem. 258:7155–7160.

    PubMed  CAS  Google Scholar 

  • Barrandon, Y., and Green, H., 1987, Cell migration is essential for sustained growth of keratinocyte colonies: The roles of transforming growth factor-α and epidermal growth factor, Cell 50:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ezra, J., Sheibani, K., Hwang, D. L., and Lev-Ran, A., 1990, Megakaryocyte synthesis is the source of epidermal growth factor in human platelets, Am. J. Pathol. 137:755–759.

    PubMed  CAS  Google Scholar 

  • Betz, P., Nerlich, A., Tubel, J., Penning, R., and Eisenmenger, W., 1993, Localization of tenascin in human skin wounds—an immunohistochemical study, Int. J. Leg. Med. 105:325–328.

    Article  CAS  Google Scholar 

  • Blenis, J. P., 1993, Signal transduction via the MAP kinases, Proc. Natl. Aca. Sci. USA 90:5889–5892.

    Article  CAS  Google Scholar 

  • Blessing, M., Nanney, L. B., King, L. E., Jones, C. M., and Hogan, B. L., 1993, Transgenic mice as a model to study the role of TGF-beta-related molecules in hair follicles, Genes Dev. 7:204–215.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J., 1992, Can genes by truly redundant? Curr. Biol. 2:553–554.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. L., Curtsinger, L., Brightwell, J. R., Ackerman, D. M., Tobin, G. R., Polk, H. C., George-Nascimento, C., Valenzula, P., and Schultz, G. S., 1986, Enhancement of epidermal regeneration by biosythetic epidermal growth factor, J. Exp. Med. 163:1319–1324.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. L., Curtsinger, L., White, M., Mitchell, R., Pietsch, J., Nordquist, R., von Fraunhofer, A., and Schultz, G. S., 1988, Acceleration of tensile strength of incisions treated with EGF and TGF-β, Ann. Surg. 208:788–794.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. J., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. P., Twardzik, D. R., Marguardt, H. J., and Todaro, G. J., 1985, Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor-α, Nature 313:491–492.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, A., Davidson, J. M., Kamerath, C. D., Wolt, T. B., and Woodward, S. C., 1985, Sustained release of epidermal growth factor accelerates wound repair, Proc. Natl. Acad. Sci. USA 82:7340–7344.

    Article  PubMed  CAS  Google Scholar 

  • Cadena, D. L., and Gill, G. N., 1992, Receptor tyrosine kinases, FASEB J. 6:2332–2337.

    PubMed  CAS  Google Scholar 

  • Callaghan, T., Antczak, M., Flinkinger, T., Raines, M., Myers, M. K., and Kuug, H-J., 1993, A complete description of the EGF-receptor exon structure: Implication in oncogenic activation and domain evolution, Oncogene 8:2939–2948.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., 1992, Receptor tyrosine kinase substrates; src homology domains and signal transduction, FASEB J. 6:3283–3289.

    PubMed  CAS  Google Scholar 

  • Carpenter, G., 1993, Intracellular signalling from the epidermal growth factor receptor, FORUM Trends Exp. Clin. Med. 3:616–634.

    Google Scholar 

  • Carpenter, G., and Cohen, S., 1976, 125I-Labelled human epidermal growth factor. Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71:159–171.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G., King, L. E., and Cohen, S., 1978, Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro, Nature 276:409–410.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C., Tennenbaum, T., Dempsey, P. J., Coffey, R. J., Yuspa, S. H., and Dlugosz, A. A., 1993, Epidermal growth factor receptor ligands regulate keratin 8 expression in keratinocytes, and transforming growth factor-α mediates the induction of keratin 8 by the v-ras Ha oncogene, Cell Growth Differ. 4:317–327.

    PubMed  CAS  Google Scholar 

  • Coffey, R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Gouskin, A. S., Moses, H. L., and Pittelkow, M. R., 1987, Production and autoinduction of transforming growth factor-a in human keratinocytes, Nature 328:817–819.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S., and Elliott, G. A., 1963, The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse, J. Invest. Dermatol. 40:1–5.

    PubMed  CAS  Google Scholar 

  • Colige, A. C., Lambert, C. A., Nusgens, B. V., and Lapiere, C. M., 1992, Effect of cell-cell and cell-matrix interactions on the response of fibroblasts to epidermal growth factor in vitro. Expression of collagen type I, collagenase, stromelysin and tissue inhibitor of metalloproteinases, Biochem. J. 285:215–221.

    PubMed  CAS  Google Scholar 

  • Darnell, J. E., Kerr, I. M., and Stark, G. R., 1994, Jak-Stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science 264:1415–1420.

    Article  PubMed  CAS  Google Scholar 

  • Delany, A. M., Brinkerhoff, C. E., 1992, Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts, J. Biol. Biochem. 50:400–410.

    CAS  Google Scholar 

  • Derynck, R., 1986, Transforming growth factor-α: Structure and biological activities, J. Cell Biol. 32:293–304.

    CAS  Google Scholar 

  • Dlugosz, A. A., Cheng, C., Denning, M. F., Dempsey, P. J., Coffey, R. J., and Yuspa, S. H., 1994, Ker-atinocyte growth factor receptor ligands induce transforming growth factor alpha expression and activate the epidermal growth factor receptor signalling pathway in cultural epidermal keratinocytes, Cell Growth Diff. 5:1283–1292.

    PubMed  CAS  Google Scholar 

  • Dominey, A. M., Wang, X., King, Jr., L. E., Nanney, L. B., Gagne, T. A., Sellheyer, C., Bundman, D. S., Longley, M. A., Rothnagel, J. A., Greenhalgh, D. A., and Roop, D. R., 1993, Targeted over-expression of transforming growth factor-α in the epidermis of transgenic mice elicits hyperproliferation, hyerkeratosis, and differentiation and spontaneous squamous papillomas, Cell Growth Differ. 4:1071–1082.

    PubMed  CAS  Google Scholar 

  • Donato, N. J., Rosenblum, M. G., and Steck, P. A., 1992, Tumor necrosis factor regulates tyrosine phosphorylation on epidermal growth factor receptors in A431 carcinoma cells: Evidence for a distinct mechanism, Cell Growth Differ. 3:259–268.

    PubMed  CAS  Google Scholar 

  • Dvoneh, V. M., Murhpey, R. J., Matsuoka, J., and Grotendorst, C. R., 1992, Changes in growth factor levels in human wound fluid, Surgery 112:18–23.

    Google Scholar 

  • Dvorak, H. F., 1986, Tumors: wounds that do not heal: Similarities between tumor stroma generation and wound healing, N. Eng. J. Med. 315:1650–1659.

    Article  CAS  Google Scholar 

  • Egan, S. E., and Weinberg, R. A., 1993, The pathway of signal achievement, Nature, 365:781–783.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, D. L., Nanney, L. B., and King, L. E., 1990, Increased epidermal growth factor receptors in seborrheic keratoses and acrochordons of patients with the dysplastic nevus syndrome, J. Am. Acad. Dermatol. 23:1070–1077.

    Article  PubMed  CAS  Google Scholar 

  • Engel, J., 1989, EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Letters 251:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P., 1993a, Gene knockouts of c-src, transforming growth factor-β suggest superfluous, nonfunctional expression of proteins, J. Cell Biol. 120:1070–1081.

    Article  Google Scholar 

  • Erikson, H. P., 1993b, Tenascin-c, tenascin-R and tenascin-x: A family of talented proteins in search of functions, Curr. Opin. Cell. Biol. 5:869–876.

    Article  Google Scholar 

  • Falanga, V., Eaglstein, W. H., Bucalo, B., Katz, M. H., Harris, B., and Carson, P., 1992, Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers, J. Dermatol. Surg. Oncol. 18:604–606.

    Article  PubMed  CAS  Google Scholar 

  • Fava, R. A., Nanney, L. B., Wilson, D., and King, Jr., L. E., 1993, Annexin-1 localization in human skin: Possible association with cytoskeletal elements in keratinocytes of the stratum spinosum, J. Invest. Dermatol. 101:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, E. H., Charbonneau, H., and Tonks, N. K., 1991, Protein tyrosine phosphatase: A diverse family of intracellular and transmembrane enzymes, Science 253:401–406.

    Article  Google Scholar 

  • Fu, X.-Y., and Zhang, J. J., 1993, Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter, Cell 74:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Gates, R. E., King, L. E., Hanks, S. K., and Nanney, L. B., 1994, Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture, Cell Growth Differ. 5:891–899.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Brown, D. D., Birdwell, C. R., and Zetter, B. R., 1978, Control of proliferation of human vascular endothelial cells; characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin, J. Cell Biol. 77:774–788.

    Article  PubMed  CAS  Google Scholar 

  • Graves, B. J., Crowther, R. L., Chandran, C., Rumberger, J. M., Li, S., Huang, K-S., Presky, D. H., Familletti, P. C., Wolitzky, B. A., and Burns, D. K., 1994, Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains, Nature 367:532–534.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. R., and Couchman, J. R., 1984, Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle, J. Invest. Dermatol. 83:118–123.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. R., Basketter, D. A., Couchman, J. R., and Rees, D. A., 1983, Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth, Dev. Biol. 100:506–512.

    Article  PubMed  CAS  Google Scholar 

  • Griswold-Prenner, I., Carlin, C. R., and Rosner, M. R., 1993, Mitogen-activated protein kinase regulates the epidermal growth factor receptor through activation of a tryosine phosphatase, J. Biol. Chem. 268:13050–13054.

    PubMed  CAS  Google Scholar 

  • Grotendorst, G. R., Smale, G., and Pencer, D., 1989, Production of transforming growth factor-β by human peripheral blood monocytes and neutrophils, J. Cell. Physiol. 140:396–402.

    Article  PubMed  CAS  Google Scholar 

  • Gunaratne, P., Stoscheck, C. M., Gates, R. E., Nanney, L. B., and King, Jr., L. E., 1994, Protein tyrosyl phosphatase-1B is expressed by normal human epideramis, keratinocytes and A-431 cells, and de-phosphorylates substrates of the epidermal growth factor receptor, J. Invest. Dermatol., 103:701–706.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A., 1994, A biochemical function for ras—at last, Science 264:1413–1463.

    Article  PubMed  CAS  Google Scholar 

  • Hayaski, T., Nichioka, J., Shingekiyo, T., Saito, Saito, S., and Suzuki, K., 1994, Protein S Tokushima: Abnormal molecule with a substitution of Glu for Lys-155 in the second epidermal growth factor-like domain of proteins, Blood 83:683–690.

    Google Scholar 

  • Heavner, G. A., Falcone, M., Kruszynski, M., Epps, L., Mervic, M., Riexinger, D., and Mcever, R. P., 1993, Peptides from multiple regions of the lectin domain of P-selectin inhibiting neutrophil adhesion, Int. J. Peptide Protein Res. 42:484–489.

    Article  CAS  Google Scholar 

  • Hebda, P. A., 1988, Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Sotomayor, S. M. T., Arteaga, C. L., Soler, C., and Carpenter, G., 1993, Epidermal growth factor stimulates substrate-selective protein-tyrosine-phosphatase activity, Proc. Natl. Acad. Sci. USA 90: 7691–7695.

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama, S., Abraham, J. A., Miller, J. I., Diffes, J. C., and Klagsbrun, M., 1991, A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF, Science 251:936–939.

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama, S., Abraham, J. A., and Klagsbrun, M., 1993, Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: Dependence on interactions with cell surface heparan sulfate, J. Cell Biol. 122:933–940.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W. E., Sliwkowski, M. X., Akita, R. W., Henzel, W. J., Lee, J., Park, J. W., Yansura, D., Abadi, N., Raab, H., Lewis, G. D., Shepard, M., Kuang, W., Wood, W. I., Goeddel, V., and Vandlen, R. L., 1992, Identification of heregulin, a specific activator of p185erbB2, Science 256:1205–1210.

    Article  PubMed  CAS  Google Scholar 

  • Kansas, G. S., Saunders, K. B., Ley, K., Zakrzewicz, A., Gibson, R. M., Furie, B. C., Furie, B., and Tedder, T. F., 1994, A role for the epidermal growth factor-like domain of p-selectin in ligand recognition and cell adhesion, J. Cell Biol. 124:609–618.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, L. D., Magun, B. E., and Matrisian, L. M., 1992, The role of c-Fos in growth factor regulation of stromelysin/transin gene expression, Matrix Suppl. 1:176–183.

    PubMed  CAS  Google Scholar 

  • King, L. E., Stoscheck, C. M., Gates, R., and Nanney, L. B., 1991, Epidermal growth factor and transforming growth factorα, in: Physiology, Biochemistry and Molecular Biology of the Skin (L. Goldsmith, ed.), pp. 329–350, Oxford University Press, New York.

    Google Scholar 

  • Krane, J. F., Murphy, D. P., Carter, D. M., and Kruger, J. G., 1991, Synergistic effects of EGF and insulin-like growth factor I/stomatomedin C (IGF-1) on keratinocyte proliferation may be mediated by IGF-1 transmodulation of the EGF receptor, J. Invest. Dermatol. 96:4199–4204.

    Google Scholar 

  • Laato, M., Kahari, V. M., Niinikoski, J., and Vuorio, E., 1987, Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes, Biochem. J. 247:385–388.

    PubMed  CAS  Google Scholar 

  • Lamer, A. C., David, M., Feldman, G. M., Igarashi, K., Hackett, R. H., Webb, D. S. A., Sweitzer, S. M., Petricoin, E. F., and Finbloom, D. S., 1993, Tyrosine phosphorylation of DNA binding proteins by multiple cytokines, Science 261:1730–1733.

    Article  Google Scholar 

  • Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study of hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–91.

    PubMed  CAS  Google Scholar 

  • Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell. Physiol. 89:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Lightner, V. A., 1994, Tenascin: Does it play a role in epidermal morphogenesis and homeostasis? J. Invest. Dermatol. 102:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Luetteke, N. C., Hu Qiu, T., Peiffer, R. L., Oliver, P., Smithies, O., and Lee, D. C., 1993, TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice, Cell 73:263–278.

    Article  PubMed  CAS  Google Scholar 

  • Lutticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, G., Ziemiecki, A., Harpur, A. G., Wilks, A. F., Yasukawa, K., Taga, T., Kishimoto, T., Barbieri, G., Pellegrini, S., Sendtner, M., Heinrich, P. G., and Horn, F., 1994, Association of transcription factor APRF and protein kinase jakl with the inter-leukin-6 signal tranducer gp 130, Science 263:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.

    Article  PubMed  CAS  Google Scholar 

  • Maguire, H. C., Jaworsky, C., Cohen, J. A., Hellman, M., Weiner, D. B., and Greene, M. I., 1989, Distribution of neu (c-erbB-2) protein in human skin, J. Invest. Dermatol. 92:786–790.

    Article  PubMed  CAS  Google Scholar 

  • Marikovsky, M., Breuing, K., Yu Liu, P., Eriksson, E., Higashiyama, S., Farber, P., Abraham, J., and Klagsbrun, M., 1993, Appearance of heparin-binding EGF-like growth factor in wounds fluid as a response to injury, Proc. Natl. Acad. Sci. USA 90:3889–3893.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J., 1985, Transforming growth factor-β modulates the high affinity receptors of epidermal growth factor and transforming growth factor-α, J. Cell Biol. 100:1500–1514.

    Article  Google Scholar 

  • Medved, L. V., Vysotchin, A., and Ingham, K. C., 1994, Ca++-dependent interactions between Gla and EGF domains in human coagulation factor IX, Biochemistry 33:478–485.

    Article  PubMed  CAS  Google Scholar 

  • Moller, J. J., Ingemann-Hansen, T., and Poulsen, J. H., 1994, The epidermal growth factor-like domain of the human cartilage large aggregating proteoglycan, aggrecan: Increased serum concentration in rheumatoid arthritis, Br. J. Rheumatol. 33:44–47.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, L. B., 1990, Epidermal and dermal effects of epidermal growth factor during wound repair, J. Invest. Dermatol. 94:624–629.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, L. B., Magid, M., Stoscheck, C. M., and King, Jr., L. E., 1984, Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages, J. Invest. Dermatol. 83:385–393.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, L. B., Stoscheck, C. M., Magid, M., and King, Jr., L. E., 1986, Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis, J. Invest. Dermatol. 86:260–265.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, L. B., King, Jr., L. E., and Dale, B. A., 1990a, Epidermal growth factor receptors in genetically induced hyperproliferative skin disorders, Pediar. Dermatol. 7:256–265.

    Article  CAS  Google Scholar 

  • Nanney, L. B., Stoscheck, C. M., King, Jr., L. E., Underwood, R. A., and Holbrook, K. A., 1990b, Immu-nolocalization of epidermal growth factor receptors in normal developing human skin, J. Invest. Dermatol. 94:742–748.

    Article  PubMed  CAS  Google Scholar 

  • Nanney, L. B., Ellis, D. L., Levine, J., and King, L. E., 1992a, Epidermal growth factor receptors in idiopathic and virally induced skin diseases, Am. J. Pathol. 140:915–925.

    PubMed  CAS  Google Scholar 

  • Nanney, L. B., Gates, R. E., Todderud, G., King, Jr., L. E., and Carpenter, G., 1992b, Altered distribution of phospholipase Cγ 1 in benign hyperproliferative epidermal diseases, Cell Growth Differ. 3:233–239.

    PubMed  CAS  Google Scholar 

  • Nanney, L. B., Yates, R. A., and King, Jr., L. E., 1992c, Modulation of epidermal growth factor receptors in psoriatic lesions during treatment with topical EGF, J. Invest. Dermatol. 98:296–301.

    Article  PubMed  CAS  Google Scholar 

  • Nawa, K., Ono, M., Fujiwara, J., Sugiyama, N., Uchiyama, T., and Marumotot, Y., 1994, Monoclonal antibodies against human thrombomodulin whose epitope is located in epidermal growth factor-like domains, Biochem. Biophys. Acta 1205:162–170.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B. J., and Naidu, Y., 1994, Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin, J. Am. Acad. Dermatol. 30:535–546.

    Article  PubMed  CAS  Google Scholar 

  • Nies, D. E., Hemesath, T. J., Kim, J. H., Gulcher, J. R., and Stefansson, K., 1991, The complete cDNA sequence of human hexabrachion (tenascin). A multidomain protein containing unique epidermal growth factor repeats, J. Biol. Chem. 266:2818–2823.

    PubMed  CAS  Google Scholar 

  • Nowak, U. K., Cooper, A., Saunders, D., Smith, R. A. G., and Dobson, C. M., 1994, Unfolding studies of the protease domain of urokinase-type plasminogen activator: The existence of partly folded states and stable subdomains, Biochemistry 33:2951–2960.

    Article  PubMed  CAS  Google Scholar 

  • Oka, Y., and Orth, D. N., 1983, Human plasma epidermal growth factor urogastrone is associated with blood platelets, J. Clin. Invest. 72:249–259.

    Article  PubMed  CAS  Google Scholar 

  • Olashaw, N. E., O’Keefe, E. J., and Pledger, W. J., 1986, Platelet-derived growth factor modulates epidermal growth factor receptors by a mechanism distinct from that of phorbol esters, Proc. Natl. Acad. Sci. USA 83:3834–3839.

    Article  PubMed  CAS  Google Scholar 

  • Ono, M., Okamura, K., Nakayama, Y., Tomita, M., Sata, Y., Komatsu, Y., and Kuwano, M., 1992, Induction of human microvascular endothelial tubular morphogenesis by human keratinocytes: Involvement of transforming growth factor-alpha, Biochem. Biophys. Res. Commun. 189:601–609.

    Article  PubMed  CAS  Google Scholar 

  • Panayotou, G., Aumailley, M., Timpl, R., and Engel, J., 1989, Domains of laminin with growth factor activity, Cell 56:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Patel, V. G., Shum-Siu, A., Heniford, B. W., Wieman, T. J., and Hendler, F. J., 1994, Detection of epidermal growth factor receptor mRNA in tissue sections from biopsy specimens using in situ polymerase chain reaction, Am. J. Pathol. 144:7–14.

    PubMed  CAS  Google Scholar 

  • Pelech, S. L., and Sanghera, J. S., 1992, MAP kinases: Charting the regulatory pathways, Science 257:1355–1356.

    Article  PubMed  CAS  Google Scholar 

  • Peles, E., Bacus, S. S., Koski, R. A., Lu, H. S., Wen, D., Ogden, S. G., Levy, R. B., and Yarden, Y., 1992, Isolation of the Neu/HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells, Cell 69:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Peppelenbosch, M. P., Tertoolen, L. G., Hage, W. J., and DeLaat, S. W., 1993, Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products, Cell 74: 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L. C., Connors, A. W., Matrisian, L. M., Nanney, L. B., Charles, P. D., Reyes, D. P., Kerr, L. D., and Fisher, J., 1993, Role of TGFβl and EGF in the wound healing process: An in vivo biochemical evaluation, J. Wound Repair Regen. 1:41–46.

    Article  CAS  Google Scholar 

  • Pierce, G. F., Berg, J. V., Rudolph, R., Tarpley, J., and Mustoe, T. A., 1991, Platelet-derived growth factor-BB and transforming growth factor-β selectively modulate glycosaminoglycans, collagen, and myo-fibroblasts in excisional wounds, Am. J. Pathol. 138:629–646.

    PubMed  CAS  Google Scholar 

  • Pierce, G. F., Yanagishara, D., Klopchin, K., Danilenko, D. M., Hsu, E., Kenney, W. C., and Morris, C. F., 1994, Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor, J. Exp. Med. 179:831–840.

    Article  PubMed  CAS  Google Scholar 

  • Pittelkow, M. R., Cook, P. W., Shipley, G. D., Derynck, R., and Coffey, R. J., 1993, Autonomous growth of human keratinocytes requires epidermal growth factor receptor occupancy, Cell Growth Differ. 4: 513–521.

    PubMed  CAS  Google Scholar 

  • Plowman, G. D., Culouscou, J., Whitney, G. S., Green, J. M., Carlton, G. W., Foy, L., Neubauer, M. G., and Shoyab, M., 1993, Ligand-specific activation of HER4/p180, a fourth member of the epidermal growth factor receptor family, Proc. Natl. Acad. Sci. USA 90:1746–1750.

    Article  PubMed  CAS  Google Scholar 

  • Qian, X., Dougall, W. C., Hellman, M. E., and Greene, M. I., 1994, Kinase-deficient neu proteins suppress epidermal growth factor function and abolish cell transformation, Oncogene 9:1507–1514.

    PubMed  CAS  Google Scholar 

  • Quaglino, Jr., D., Nanney, L. B., Kennedy, R., and Davidson, J. M., 1990, Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model, Lab. Invest. 63:307–319.

    PubMed  CAS  Google Scholar 

  • Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z., 1988, Wound macrophages express TGFβ and other growth factors in vivo: Analysis by mRNA phenotyping, Science 241:708–712.

    Article  PubMed  CAS  Google Scholar 

  • Roesel, J. F., and Nanney, L. B., 1995, Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair, J. Surg. Res. 58:449–459, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., and Bowtell, D., 1993, The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1, Nature 363:83–85.

    Article  PubMed  CAS  Google Scholar 

  • Ruff-Jamison, S., Chen, K., and Cohen, S., 1993, Induction by EGF and interferon-γ of tyrosine phosphory-lated DNA binding proteins in mouse liver nuclei, Science 261:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  • Sadowski, H. B., Shuai, K., Darnell, J. E., and Gilman, M. Z., 1993, A common nuclear signal transduction pathway activated by growth factor and cytokine receptors, Science 261:1739–1744.

    Article  PubMed  CAS  Google Scholar 

  • Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S., 1992, Mice develop normally without tenascin, Genes Dev. 6:1821–1831.

    Article  PubMed  CAS  Google Scholar 

  • Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D. C., 1990, Overexpression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast, Cell 61:1121–1129.

    Article  PubMed  CAS  Google Scholar 

  • Sasada, R., Ono, Y., Taniyama, Y., Shing, Y., Folkman, J., and Igarishi, K., 1993, Cloning and expression of cDNA encoding human betacellulin, a new member of the EGF family, Biochem. Biophys. Res. Commun. 190:1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Schalkwijk, J., Steijten, P. M., van Vlijmen-Willems, I. M. J. J., Oosterling, B., Mackie, E. J., and Verstraeten, A. A., 1991, Tenascin expression in human dermis related to epidermal proliferation, Am. J. Pathol. 139:1143–1150.

    PubMed  CAS  Google Scholar 

  • Schreiber, A. B., Winkler, M. E., and Derynck, R., 1986, Transforming growth factor-α: A more potent angiogenic mediator than epidermal growth factor, Science 232:1250–1252.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, G. S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzik, D. R., and Todaro, G. J., 1987, Epithelial wound healing enhanced by transforming growth factor-α and vaccinia growth factor, Science 235:350–352.

    Article  PubMed  CAS  Google Scholar 

  • Shing, Y., Christofori, G., Hanahan, D., Ono, Y., Sasada, R., Igarashi, K., and Folkman, J., 1993, Betacellulin: A mitogen from pancreatic B cell tumors, Science 259:1604–1607.

    Article  PubMed  CAS  Google Scholar 

  • Shima, I., Sasaguri, Y., Nakano, R., Yamana, H., Fujita, H., Kakegawa, T., Morimatsu, M., 1993, Production of matrix metalloproteinase 9192KDa gelatinase by human oesophageal squamous cell carcinoma in response to epidermal growth factor, Brit. J. Can. 67:721–727.

    Article  CAS  Google Scholar 

  • Shoyab, M., Plowman, G. D., McDonald, V. L., Bradley, J. G., and Todaro, G. J., 1989, Structure and function of human amphiregulin: A member of the epidermal growth factor family, Science 243:1074–1076.

    Article  PubMed  CAS  Google Scholar 

  • Sibilia, M., Wagner, E. F., 1995, Strain-dependent epithelial defects in mice lacking the EGF receptor, Science 269:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B. O., Lowning, K. A., Dudgeon, T. J., Cunningham, M., Driscoll, P. C., and Campbell, I. D., 1994, Secondary structure of fibronectin type 1 and epidermal growth factor modules from tissue-type plas-minogen activator by nuclear magnetic resonance, Biochemistry 33:2422–2429.

    Article  PubMed  CAS  Google Scholar 

  • Soler, C., Beguinot, L., Sorkin, A., and Carpenter, G., 1993, Tyrosine phosphorylation of ras GTPase-activating protein does not require association with the epidermal growth factor receptor, J. Biol. Chem. 268:22010–22019.

    PubMed  CAS  Google Scholar 

  • Soler, C., Beguinot, L., and Carpenter, G., 1994, Individual epidermal growth factor receptor auto-phosphorylation sites do not stringently define association motifs for several SH-2 containing proteins, J. Biol. Chem. 269:12320–12324.

    PubMed  CAS  Google Scholar 

  • Sorokin, A., and Carpenter, G., 1993, Interaction of activated EGF receptors with coated pit adaptins, Science 261:612–615.

    Article  Google Scholar 

  • Sorokin, A., Lemmon, M. A., Ullrich, A., and Schlessinger, J., 1994, Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond, J. Biol. Chem. 269:9752–9759.

    PubMed  CAS  Google Scholar 

  • Stoscheck, C. M., Nanney, L. B., and King, Jr., L. E., 1992, Quantitative determination of EGF-R during epidermal wound healing, J. Invest. Dermatol. 99:645–649.

    Article  PubMed  CAS  Google Scholar 

  • Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., and Nanney, L. B., 1993, Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds, Am. J. Pathol. 143:1657–1666.

    PubMed  CAS  Google Scholar 

  • Taylor, H. C., Lightner, V. A., Beyer, W. F., McCaslin, D., Briscoe, G., and Erickson, H. P., 1989, Biochemical and structural studies of tenascin hexabrachion proteins, J. Cell. Biochem. 41:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Threadgill, D. W., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., LaMantia, C., Mourton, T., Herrup, K., Harris, R. C., Baarnard, J. A., Yuspa, S. H., Coffey, R. J., Magnuson, T., 1995, Targeted disruption of mouse EGF receptor: Effects of genetic background on mutant phenotype, Science 269:230–234.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Shintani, A., Nakata, M., Shing, Y., Folkman, J., Igarashi, K., and Sasada, R., 1994, Recombinant human betacellulin, J. Biol. Chem. 269:9966–9973.

    PubMed  CAS  Google Scholar 

  • Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J., 1991, Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma, N. Engl. J. Med. 324:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Wen, D., Peles, E., Cupples, R., Suggs, S. V., Bacus, S. S., Luo, Y., Trail, G., Hu, S., Silbiger, S. M., Levy, R. B., Koski, R. A., Lu, H. S., and Yarden, Y., 1992, Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit, Cell 69:559–572.

    Article  PubMed  CAS  Google Scholar 

  • Wenczak, B. A., and Nanney, L. B., 1993, Correlation of TGFa and EGF-R with proliferating cell nuclear antigen in human burn wounds, J. Wound Repair Regen. 1:219–230.

    Article  CAS  Google Scholar 

  • Wenczak, B. A., Lynch, J. B., and Nanney, L. B., 1992, Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair, J. Clin. Invest. 90:2392–2401.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, J. J., and Williams, L. T., 1992, Large induction of keratinocyte growth factor expression in the dermis during wound healing, Proc. Natl. Aca. Sci. USA 89:6896–6900.

    Article  CAS  Google Scholar 

  • Williams, R., Sanghera, J., Wu, F., Carbonaro-Hall, D., Campbell, D. L., Warburton, D., Pelech, S., and Hall, F., 1993, Identification of a human epidermal growth factor receptor-associated protein kinase as a new member of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase family, J. Biol. Chem. 268:18213–18217.

    PubMed  CAS  Google Scholar 

  • Zhong, Z., Wen, Z., and Darnell, J. E., 1994, Stat3: A STAT family member activated by tyrosine phospho-rylation in response to epidermal growth factor and interleukin-6, Science 264:95–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nanney, L.B., King, L.E. (1988). Epidermal Growth Factor and Transforming Growth Factor-α. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics