Skip to main content

Kinetics of Ammonia Synthesis and Influence on Converter Design

  • Chapter
Catalytic Ammonia Synthesis

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Ammonia synthesis is one of the most important processes operated by the chemical industry. Modern ammonia synthesis plants can produce up to 1800 tons of ammonia per day. Clearly, the design of the large reactors requires powerful and reliable calculation methods and the availability of a sound kinetic equation is an essential requirement. It is not only necessary for reactor design, but is also required to express catalyst performances generated from either laboratory or pilot plant experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Bokhoven, C. Van Heerden, R. Westrik, and P. Zwietering, in: Catalysis (P. H. Emmett, ed.), Vol. 3, p. 318, Reinhold, New York (1955).

    Google Scholar 

  2. M. Temkin and V. Pyzhev, Acta Physicochim. USSR 12, 327 (1940).

    CAS  Google Scholar 

  3. Ref. 1, p. 321.

    Google Scholar 

  4. M. Temkin, J. Phys. Chem. USSR 24, 1312 (1950).

    CAS  Google Scholar 

  5. A. Nielsen, J. Kjaer, and B. Hansen, J. Catal. 3, 68 (1964).

    Article  CAS  Google Scholar 

  6. U. Guacci, F. Traina, G. Buzzi Ferraris, and R. Barisone, Ind. Eng. Chem., Prod. Des. Dev. 16, 166 (1977).

    Article  CAS  Google Scholar 

  7. M. I. Temkin, N. M. Morozov, and E. N. Shapatina, Kinet. Catal. (Engl. Transi.) 4, 565 (1963).

    CAS  Google Scholar 

  8. G. W. Bridger and C. B. Snowdon, in: Catalyst Handbook, p. 141, Wolfe Scientific Books, London (1970).

    Google Scholar 

  9. I. A. Smirnof, N. M. Morozov, and M. I. Temkin, Dokl. Akad. Nauk SSSR 153, 386 (1963).

    Google Scholar 

  10. S. Brunauer, K. S. Love, and R. G. Keenan, J. Am. Chem. Soc. 64, 751 (1942).

    Article  CAS  Google Scholar 

  11. A. Ozaki, H. S. Taylor, and M. Boudart, Proc. R. Soc. London, Scr. A 258, 47 (1960).

    Article  CAS  Google Scholar 

  12. A. Nielsen, J. Kjaer, and B. Hansen, J. Catal. 3, 68 (1964).

    Article  CAS  Google Scholar 

  13. R. Brill, J. Catal. 16, 16 (1970).

    Article  CAS  Google Scholar 

  14. G. Buzzi Ferraris, G. Donati, F. Rejna, and S. Carrà, Chem. Eng. Sci. 29, 1621 (1974).

    Article  Google Scholar 

  15. M. Bowker, I. B. Parker, and K. C. Waugh, Appl. Catal. 14, 101 (1985).

    Article  CAS  Google Scholar 

  16. G. Ertl, in: Catalysis Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 4, p. 273, Springer-Verlag, Berlin (1983).

    Google Scholar 

  17. P. Stoltze and J. K. Norskov, Phys. Rev. Lett. 55, 2502 (1985).

    Article  CAS  Google Scholar 

  18. G. Ertl, Critical Reviews in Solid State and Materials Science, p. 349, CRC Press, Boca Raton (1982).

    Google Scholar 

  19. Nitrogen 31(9), 22 (1964).

    Google Scholar 

  20. U. Zardi, Ammonia Casale A.S., U.S. Patent No. 4,372,920 (1983).

    Google Scholar 

  21. G. Gramatica, Tecnimont S.p.A., U.S. Patent No. 4,205,044 (1980).

    Google Scholar 

  22. O. J. Quartulli and G. A. Wagner, Hydrocarbon Process. 12, 115 (1978).

    Google Scholar 

  23. S. Ergun, Chem. Eng. Prog. 48(2), 89 (1952).

    CAS  Google Scholar 

  24. C. E. Schwartz and J. M. Smith, Ind. Eng. Chem. 45(6), 1209 (1953).

    Article  CAS  Google Scholar 

  25. O. Levenspiel and K. B. Bischoff, Advances in Chemical Engineering, Vol. 4, Academic Press, New York (1963).

    Google Scholar 

  26. P. N. Dwivedi and S. N. Upadhyay, Ind. Eng. Chem., Process Des. Dev. 16(2), 157 (1977).

    Article  CAS  Google Scholar 

  27. D. C. Dyson and J. M. Simon, Ind. Eng. Chem., Fundam. 7(4), 605 (1968).

    Article  CAS  Google Scholar 

  28. C. P. P. Singh and D. N. Saraf, Ind. Eng. Chem., Process Des. Dev. 18(3), 364 (1979).

    Article  CAS  Google Scholar 

  29. A. Cappelli and A. Collina, Inst. Chem. Eng., Symp. Ser. 35(5), 10 (1972).

    Google Scholar 

  30. D. F. Fairbanks and C. R. Wilke, Ind. Eng. Chem. 42(3), 471 (1950).

    Article  CAS  Google Scholar 

  31. A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd ed., Jul. Gjellerups Forlag, Copenhagen (1968).

    Google Scholar 

  32. J. A. Beattie, Proc. Natl. Acad. Sci. U.S.A. 16, 14 (1930).

    Article  CAS  Google Scholar 

  33. L. J. Gillespie and J. A. Beattie, Phys. Rev. 36, 743 (1930).

    Article  CAS  Google Scholar 

  34. L. D. Gaines, Ind. Eng. Chem., Process Des. Dev. 16(3), 381 (1977).

    Article  CAS  Google Scholar 

  35. B. Mansson and B. Andersen, Ind. Eng. Chem., Process Des. Dev. 25, 59 (1986).

    Article  Google Scholar 

  36. H. W. Cooper, Hydr. Proc, Pet. Ref. 46(2), 159 (1967).

    CAS  Google Scholar 

  37. R. H. Newton, Ind. Eng. Chem. 27, 302 (1935).

    Article  CAS  Google Scholar 

  38. Ya. S. Kazarnovskii, Zh. Fiz. Khim. 19, 392 (1945).

    CAS  Google Scholar 

  39. O. A. Hougen, K. M. Watson, and R. R. Ragatz, Chemical Process Principles, Part II, Wiley, New York (1947).

    Google Scholar 

  40. F. Horn, Z. Elektrochem. 65, 295 (1961).

    CAS  Google Scholar 

  41. S. Strelzoff, Technology and Manufacture of Ammonia, Wiley, New York (1981).

    Google Scholar 

  42. U. Zardi, Hydr. Proc. 8, 129 (1982).

    Google Scholar 

  43. Nitrogen 140(6), 30 (1982).

    Google Scholar 

  44. A. V. Slack and G. R. James, Ammonia, Vol. III, Marcel Dekker, New York (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gramatica, G., Pernicone, N. (1991). Kinetics of Ammonia Synthesis and Influence on Converter Design. In: Jennings, J.R. (eds) Catalytic Ammonia Synthesis. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9592-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9592-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9594-3

  • Online ISBN: 978-1-4757-9592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics