Skip to main content

Carbohydrate Metabolism

  • Chapter
Biochemistry
  • 2410 Accesses

Abstract

We begin our study of metabolism with carbohydrates because of their central role in the generation, use, and storage of metabolic energy. Additionally, carbohydrates are of major importance in metabolism because their degradations and interconversions provide the carbon skeletons for the biosynthesis of most other metabolites, from small coenzymes to large structural molecules. After a look at some general aspects of carbohydrate metabolism, we will discuss specific metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  • Beylot, M., Soloviev, M. V., David, F., Landau, B. R., and Brunengraber, H., Tracing hepatic gluconeogenesis relative to citric acid cycle activity in vitro and in vivo, J. Biol. Chem. 270: 1509–1514 (1995).

    Article  PubMed  CAS  Google Scholar 

  • DiDonato, L., Des Rosiers, C., Montgomery, J. A., David, F., Garneau, M., and Brunengraber, H., Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the carbon-13-labeling pattern of glutamate, J. Biol. Chem. 268: 4170–4180 (1993).

    CAS  Google Scholar 

  • Hanson, R. W., and Patel, Y. M., Phosphoenolpyruvate carboxykinase (GTP): The gene and the enzyme, Adv. Enzymol. Relat. Areas Mol. Biol. 69: 203–28I (1994).

    PubMed  CAS  Google Scholar 

  • Hardie, D. G., Biochemical Messengers, Chapman & Hall, London (1991).

    Book  Google Scholar 

  • Kyriakis, J. M., and Avruch, J., Sounding the alarm: Protein kinase cascades activated by stress and inflammation, J. Biol. Chem. 271: 24313–24316 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lebioda, L., and Stec, B., Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor, Nature (London) 333: 683–686 (1988).

    Article  CAS  Google Scholar 

  • Leschine, S. B., Cellulose degradation in anaerobic environments, Annu. Rev. Microbiol. 49: 399–426 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lienhard, G. E., Slot, J. W., and Mueckler, M. M., How cells absorb glucose, Sci. Am. 266 (1): 86–91 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Pilkis, S. J., E1-Maghrabi, M. R., and Claus, T. H., Hormonal regulation of hepatic gluconeogenesis and glycolysis, Annu. Rev. Biochem. 57: 755–784 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Pilkis, S. J., Claus, T. H., Kurland, I. J., and Lange, A. J., 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: A metabolic signaling enzyme, Annu. Rev. Biochem. 64: 799–835 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Smythe, C., and Cohen, P., The discovery of glycogenin and the priming mechanism for glycogen biosynthesis, Eur. J. Biochem. 200: 625–631 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Strader, C. D., Fong, T. M., Tota, M. R., and Underwood, D., Structure and function of G protein-coupled receptors, Annu. Rev. Biochem. 63: 101–132 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. S., Buechler, J. A., and Yonemoto, W., cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes, Annu. Rev. Biochem. 59: 971–1005 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Wood, T., The Pentose Phosphate Pathway, Academic Press, Orlando (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stenesh, J. (1998). Carbohydrate Metabolism. In: Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9427-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9427-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9429-8

  • Online ISBN: 978-1-4757-9427-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics