Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 59))

  • 479 Accesses

Abstract

In Hamiltonian mechanics, the small parameter necessary to do asymptotics is usually obtained by localizing the system around some wellknown solution, e.g. an equilibrium. As we shall see, the part played by the small parameter in the normal form of the Hamiltonian determines the asymptotic estimates which we can obtain. In the various resonance cases which we shall discuss, these estimates take different forms the theory of which is based on the preceding chapters with special extensions for the Hamiltonian context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Aa, E. and Sanders, J.A., “On the 1:2:1- resonance, its periodic orbits and integrals,” in Asymptotic Analysis, from Theory to Application, ed. F. Verhulst, Lecture Notes in Mathematics #711, Springer-Verlag, Berlin (1979).

    Google Scholar 

  2. van der Aa, E., “First order resonances in three-degrees-of-freedom systems,” Celestial Mechanics 31, pp. 163–191 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  3. van der Aa, E. and Verhulst, F., “Asymptotic integrability and periodic solutions of a Hamiltonian system in 1:2:2-resonance,” SIAM J. Math. Anal. 15, pp. 890–911 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. Abraham, R. and Marsden, J.E., Foundations of Mechanics (2nd edi- tion), The Benjamin/Cummings Publ. Co., Reading, Mass. (1978).

    Google Scholar 

  5. Abraham, R.H. and Shaw, C.D., Dynamics-The Geometry of Behavior 1,11, Aerial Press, Inc., Santa Cruz, California (1983).

    Google Scholar 

  6. Arnold, V.I., “Instability of dynamical systems with several degrees of freedom,” Dokl. Akad. Nauk. SSSR 156, pp. 581–585 (1964).

    Google Scholar 

  7. Arnold, V.I., “Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance during the course of their evolution,” Soviet Math. 6, pp. 331–334 (1965).

    Google Scholar 

  8. Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New - York (1978).

    MATH  Google Scholar 

  9. Arnold, V.I., Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York (1983).

    Book  MATH  Google Scholar 

  10. Balachandra, M. and Sethna, P.R., “A generalization of the method of averaging for systems with two time-scales,” Archive Rat. Mech. Anal. 58, pp. 261–283 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  11. Balbi, J.H., “Averaging and reduction,” Int. J. Non-linear Mechanics 17 (5/6), pp. 343–353 (1982).

    Article  MathSciNet  Google Scholar 

  12. Banfi, C., “Sull’approssimazione di processi non stazionari in meccanica non lineare,” Bolletino dell Unione Matematica Italiana 22, pp. 442–450 (1967).

    MathSciNet  MATH  Google Scholar 

  13. Banfi, C. and Graffi, D., “Sur les méthodes approchées de la mécanique non linéaire,” Actes du Coll. Equ. Diff. Non Lin., Mons, pp. 33–41 (1969).

    Google Scholar 

  14. Berry, M.V., “Regular and irregular motion,” pp. 16–120 in Topics in Nonlinear Dynamics, ed. Jorna,S., Am. Inst. Phys. Conf. Proc. (1978).

    Google Scholar 

  15. Besjes, J.G., “On the asymptotic methods for non-linear differential equations,” Journal de Mécanique 8 pp. 357–373 (1969).

    Google Scholar 

  16. Bogoliubov, N.N. and Mitropolskii, Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, New York (1961).

    Google Scholar 

  17. Bogoliubov, N.N., Mitropolskii, Yu. A., and Samoilenko, A.M., Methods of Accelerated Convergence in Nonlinear Mechanics, Hindustan Publ. Co. and Springer Verlag, Delhi and Berlin (1976).

    Google Scholar 

  18. Bohr, H., Fastperiodische Funktionen, Springer Verlag, Berlin (1932).

    Google Scholar 

  19. van der Burgh, A.H.P., Studies in the Asymptotic Theory of Nonlinear Resonance, Technical Univ., Delft (1974).

    Google Scholar 

  20. Byrd, P.F. and Friedman, M.B., Handbook of Elliptic Integrals for Engineers and Scientists, Springer Verlag (1971).

    Google Scholar 

  21. Cap, F.F., “Averaging method for the solution of non-linear differential equations with periodic non-harmonic solutions,” International Journal Non-linear Mechanics 9, pp. 441–450 (1973).

    Article  Google Scholar 

  22. Coddington, A. and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill, New-York (1955).

    Google Scholar 

  23. Cushman, R., “Reduction of the 1:1 nonsemisimple resonance,” Hadronic Journal 5 pp. 2109–2124 (1982).

    Google Scholar 

  24. Cushman, R.H., “1:2:2 resonance,” manuscript (1985).

    Google Scholar 

  25. Duistermaat, J J, “Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems,” in Bifurcation Theory and Applications, ed. L.Salvadori, Lecture Notes in Mathematics #1057, Springer-Verlag (1984).

    Google Scholar 

  26. Duistermaat, J.J., “Non-integrability of the 1:1:2-resonance,” Ergodic Theory and Dynamical Systems 4 pp. 553–568 (1984).

    Google Scholar 

  27. Duistermaat, J.J., “Erratum to: Non-integrability of the 1:1:2-resonance,” Preprint (1984).

    Google Scholar 

  28. Eckhaus, W. Eckhaus, W., “New approach to the asymptotic theory of nonlinear oscillations and wave-propagation,” J. Math. An. Appl. 49, pp. 575611 (1975).

    Google Scholar 

  29. Eckhaus, W., Asymptotic Analysis of Singular Perturbations, North-Holland Publ. Co., Amsterdam (1979).

    Google Scholar 

  30. Euler, L., “De seribus divergentibus,” Novi commentarii ac. sci. Petropolitanae 5 pp. 205–237 (1754).

    Google Scholar 

  31. Euler, L., pp. 585–617 in Opera Omnia, ser. I,14 (1924).

    Google Scholar 

  32. Evan-Iwanowski, R.M., Resonance Oscillations in Mechanical Systems, Elsevier Publ. Co., Amsterdam (1976).

    Google Scholar 

  33. Fink, A.M., Almost Periodic Differential Equations, Lecture Notes in Mathematics 377, Springer Verlag, Berlin (1974).

    Google Scholar 

  34. Ford, J., “Ergodicity for nearly linear oscillator systems,” in Fundamental Problems in Statistical Mechanics III, ed. Cohen,E.G.D. (1975).

    Google Scholar 

  35. Fraenkel,L.E., “On the method of matched asymptotic expansions I,II,III,” Proc. Phil. Soc. 65, pp. 209–284 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  36. Goloskokow, E.G. and Filippow, A.P., Instationäre Schwingungen Mechanischer Systeme, Akademie Verlag, Berlin (1971).

    Google Scholar 

  37. Greenspan, B. and Holmes, Ph., “Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators,” SIAM J. Math. Analysis 15, pp. 69–97 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  38. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, Applied Mathematical Sciences, New York (1983).

    Google Scholar 

  39. Hadjidemetriou, J.D., “Two-body problem with variable mass: a new approach,” Icarus 2, p. 440 (1963).

    Article  MathSciNet  Google Scholar 

  40. Hale, J.K., Ordinary Differential Equations, Wiley-Interscience, New York (1969).

    MATH  Google Scholar 

  41. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag, New York (1981).

    Book  MATH  Google Scholar 

  42. Helleman, R.H.G., “Self-generated chaotic behaviour in nonlinear mechanics,” pp. 165–233 in Fundamental Problems in Statistical Mechanics, ed. Cohen,E.G.D., North Holland Publ., Amsterdam and New York (1980).

    Google Scholar 

  43. Jeans,J.H., Astronomy and Cosmogony, At The University Press, Cambridge (1928).

    MATH  Google Scholar 

  44. Kevorkian, J., “On a model for reentry roll resonance,” SIAM J. Appl. Math. 35 pp. 638–669 (1974).

    Google Scholar 

  45. Kirchgraber, U. and Stiefel, E., Methoden der analytischen Störungsrechnung und ihre Anwendungen, B.G. Teubner, Stuttgart (1978).

    MATH  Google Scholar 

  46. Kummer, M., “An interaction of three resonant modes in a nonlinear lattice,” Journal of Mathematical Analysis and Applications 52, pp. 64–104 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  47. Lichtenberg, A.J. and Lieberman, M.A., Regular and Stochastic Motion, Springer Verlag, Applied Mathematical Sciences, New York (1983).

    Google Scholar 

  48. Lyapunov, A.M. Lyapunov, A.M., “Problème general de la stabilité du mouvement,” Ann. of Math. Studies, Princeton,N.J. 17, Princeton Univ. Press (1947).

    Google Scholar 

  49. Martinet, L., Magnenat, P., and Verhulst, F., “On the number of isolating integrals in resonant systems with 3 degrees of freedom,” Celestial Mechanics 29, pp. 93–99 (1981).

    Article  MathSciNet  Google Scholar 

  50. van der Meer, J.-C., “Nonsemisimple 1:1 resonance at an equilibrium,” Celestial Mechanics 27, pp. 131–149 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  51. Meyer, K.R., “Normal forms for the general equilibrium,” Funkcialaj ekvacioj 27(2), pp. 261–271 (1984).

    Google Scholar 

  52. Mitropolsky, Ya. A., Problems of the Asymptotic Theory of Nonstationary Vibrations, Israel Progr. Sc. Transl., Jerusalem (1965).

    Google Scholar 

  53. Mitropolsky, Ya. A., Certains aspects des progrès de la méthode de centrage, CIME, Edizione Cremonese, Roma (1973).

    Google Scholar 

  54. Moser, J. and Siegel, C.L., Lectures on Celestial Mechanics, Springer-Verlag (1971).

    Google Scholar 

  55. Nekhoroshev, N.N., “An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems,” Usp. Mat. Nauk 32 (6), pp. 5–66 (1977).

    MATH  Google Scholar 

  56. Perko, L.M., “Higher order averaging and related methods for perturbed periodic and quasi-periodic systems,” SIAM J. Appl. Math. 17, pp. 698–724 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  57. Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste II, Gauthiers-Villars, Paris (1893).

    Google Scholar 

  58. Robinson, C., “Stability of periodic solutions from asymptotic expansions,” pp. 173–185 in Classical Mechanics and Dynamical Systems, ed. Devaney,R.L. and Nitecki,Z.H., Marcel Dekker, Inc., New York (1981).

    Google Scholar 

  59. Robinson, C., “Sustained resonance for a nonlinear system with slowly varying coefficients,” SIAM J. Math. Analysis 14(5), pp. 847–860 (1983).

    Google Scholar 

  60. Roseau, M., Vibrations nonlinéaires et théorie de la stabilité, Springer-Verlag (1966).

    Google Scholar 

  61. Roseau, M., “Solutions périodiques ou presque périodiques des systèmes differentiels de la mécanique non-linéaire,” in I.C.S.M. Course 44, Undine, Springer Verlag, Wien-New York (1970).

    Google Scholar 

  62. Sanchez-Palencia, E., “Méthode de centrage et comportement des trajectoires dans l’espace des phases,” Compt. Rend. Acad. Sci., Ser. A, Paris 280, pp. 105–107 (1975).

    MathSciNet  MATH  Google Scholar 

  63. Sanchez-Palencia, E., “Methode de centrage–estimation de l’erreur et comportement des trajectoires dans l’espace des phases,” Int. J. Non-Linear Mechanics 11 (176), pp. 251–263 (1976).

    Article  MATH  Google Scholar 

  64. Sanders, J.A., “Are higher order resonances really interesting?,” Celestial Mechanics 16 pp. 421–440 (1978).

    Google Scholar 

  65. Sanders, J.A., “On the Fermi-Pasta-Ulam chain,” Preprint #74,RUU (1978).

    Google Scholar 

  66. Sanders, J.A., “On the passage through resonance,” SIAM J. Math. An. 10, pp. 1220–1243 (1979).

    Google Scholar 

  67. Sanders, J.A., “Asymptotic approximations and extension of time-scales,” SIAM J. Math. An. 11, pp. 758–770 (1980).

    Article  MATH  Google Scholar 

  68. Sanders, J.A., “Melnikov’s method and averaging,” Celestial Mechanics 28 pp. 171–181 (1982).

    Google Scholar 

  69. van der Sluis, A., “Domains of uncertainty for perturbed operator equations,” Computing 5 pp. 312–323 (1970).

    Google Scholar 

  70. Verhulst, F., “Asymptotic expansions in the perturbed two-body problem with application to systems with variable mass,” Celestial Mechanics 11, pp. 95–129 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  71. Verhulst, F., “On the theory of averaging,” pp. 119–140 in Long Time Predictions in Dynamics, ed. Szebehely,V. and Tapley,B.D., Reidel, Dordrecht (1976).

    Google Scholar 

  72. Verhulst, F., “Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies,” Philosophical Transactions of the Royal Society of London 290, pp. 435–465 (1979).

    Google Scholar 

  73. Verhulst, F. Verhulst, F., “Asymptotic analysis of Hamiltonian systems,” Lecture Notes in Mathematics 985, pp. 137–183, Springer-Verlag (1983).

    Google Scholar 

  74. Volosov, V.M., “Averaging in systems of ordinary differential equations,” Russ. Math. Surveys 17 pp. 1–126 (1963).

    Google Scholar 

  75. Weinstein, A., “Normal modes for nonlinear, Hamiltonian systems,” Inv. Math. 20, pp. 47–57 (1973).

    Google Scholar 

  76. Weinstein, A., “Simple periodic orbits,” in AIP Conf. Proc. (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanders, J.A., Verhulst, F. (1985). Hamiltonian Systems. In: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol 59. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4575-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4575-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96229-0

  • Online ISBN: 978-1-4757-4575-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics