Skip to main content

Technologies Leading to Unified Multi-Agent Collection and Coordination

  • Chapter
Cooperative Control: Models, Applications and Algorithms

Part of the book series: Cooperative Systems ((COSY,volume 1))

Abstract

The problem of managing swarms of UAVs consists of multi-agent collection (i.e., distributed robust data fusion and interpretation) and multi-agent coordination (i.e., distributed robust platform and sensor monitoring and control). These two processes should be feedback-connected in order to improve the over-all quality of data be collected on suitable targets. This paper summarizes work proposed by Lockheed Martin Tactical Systems (LMTS) of Eagan MN and its subcontractor Scientific Systems Co., Inc. (SSCI) of Woburn MA, under contract F49620-01-C-0031 of the AFOSR Cooperative Control Theme 2. LMTS and SSCI have proposed to (1) develop a mathematical programming framework for hybrid systems analysis and synthesis, (2) develop a computational hybrid control paradigm, (3) develop transition-aware anytime algorithms for time-bounded synthesis, and (4) develop suitable modeling and cooperative control of UAV swarms for a SEAD-type mission. Regarding multi-agent collection, LMTS and SSCI will (4) develop new theoretical approaches for integrating multiplatform, multisensor, multitarget sensor management into hybrid systems theory; (5) investigate real-time nonlinear filtering for detecting and tracking low-observable targets; (6) develop new approaches to distributed, robust data fusion; and (7) develop a language for Multi-Agent Coordination broad enough to encompass Bayesian, Dempster-Shafer, and fuzzy-logic inference. The basis of our approach is twofold: (a) a novel hybrid-systems control architecture that integrates the best of the current approaches; and (b) a new foundation for multisensor-multitarget problems called “finite-set statistics.” Our approach integrates theoretically rigorous statistics (hybrid control, point process theory) with potential practicability (computational hybrid control, computational nonlinear filtering).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.J. Ballantyne, H.Y. Chan, and M.A. Kouritzin, “A novel branching particle method for tracking”, SPIE Proc, 4048: 277–287, 2000.

    Article  Google Scholar 

  2. M. Bardin, “Multidimensional Point Processes and Random Closed Sets”, J. Applied Prob., 21: 173–178, 1984.

    Article  Google Scholar 

  3. Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles, Techniques, and Software, Artech House, 1993.

    MATH  Google Scholar 

  4. R. W. Beard and F. Y. Hadaegh, “Constellation templates: An approach to autonomous formation flying”, World Automation Congress, pages 177.1–177.6, Anchorage, Alaska, May 1998.

    Google Scholar 

  5. R. W. Beard, J. Lawton, and F. Y Hadaegh, “A feedback architecture for formation control”, Proc. Amer. Control Confi, pp. 4087–4091, Chicago, IL., June 2000.

    Google Scholar 

  6. A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics and constraints”, Automatica, 35, 1999.

    Google Scholar 

  7. V.E. Beneš, “Exact finite-dimensional filters for certain diffusions with nonlinear drift”, Stochastics, 5: 65–92, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.E. Bethel and G.J. Paras, “A PDF multitarget-tracker”, IEEE Trans AES, 30: 386–403, 1994.

    Google Scholar 

  9. P.J. Bickel and D. A. Feedman, “Some asymptotic theory for the bootstrap”, Annals of Statistics, 9: 1196–1217, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Borkar, V. Chandru and S. Mitter, “Mathematical programming embeddings of logic”, Preprint, 2000.

    Google Scholar 

  11. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM, 1994.

    Book  Google Scholar 

  12. M. Branicky, Studies in Hybrid Systems: Modeling, Analysis and Control, Ph.D dissertation, MIT, June, 1995.

    Google Scholar 

  13. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990.

    MATH  Google Scholar 

  14. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer-Verlag, 1988.

    MATH  Google Scholar 

  15. F. Daum, “Exact finite dimensional nonlinear filters for continuous time processes with discrete time measurements”, in Proc. IEEE Conf. Dec. and Contr., pp. 16–22, 1984.

    Google Scholar 

  16. N. Elia and B. Brandin, “Verification of an automotive active leveler”, Proc. American Cont. Conf, pp. 2476–2480, 1999.

    Google Scholar 

  17. M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Linéarisation par bouclage dynamique et transformations de lie-bäcklun”, D.R. Acad. Sci. Paris, t. 317, Serie I, pp. 981–986, 1993

    Google Scholar 

  18. W. Gangbo and R.J. McCann, “Shape recognition via Wasserstein Distance”, Quarterly of Applied Math., Vol LVIII No. 4: 705–737, 2000.

    MathSciNet  Google Scholar 

  19. M. Gelbrich, “On a formula for the L 2 Wasserstein Metric between measures on Euclidean and Hilbert Spaces”, Math. Nachr., 147: 185–203, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. CR. Givens and R.M. Shortt, “A class of Wasserstein Metrics for probability distributions”, Michigan Math. J., 31: 231–240, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  21. LR. Goodman, R.P.S. Mahler, and H.T. Nguyen, Mathematics of Data Fusion, Kluwer Academic Publishers, 1997.

    Book  MATH  Google Scholar 

  22. Y.C. Ho and R.C.K. Lee, “A Bayesian approach to problems in stochastic estimation and control”, IEEE Trans. AC, AC-9: 333–339, 1964.

    Article  MathSciNet  Google Scholar 

  23. H.J. Hooker, Logic-based methods for optimization: Combining optimization and constraint satisfaction, Wiley, 2000.

    Book  MATH  Google Scholar 

  24. A.H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, 1970.

    MATH  Google Scholar 

  25. V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, “Spacecraft formation flying: Dynamics and control”, J. Guidance, Control, and Dynamics, 23:561–564, 2000.

    Article  Google Scholar 

  26. V. Klee and C. Witzgall, “Facets and vertices of transportation poly–topes”, Mathematics of the Decision Sciences, Part I, American Mathematical Society, pp. 257–282, 1968.

    Google Scholar 

  27. M.A. Kouritzin, “On exact filters for continuous signals with discrete observations”, IEEE Trans. Auto. Control, 43: 709–71, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Kruse, E. Schwencke, and J. Heinsohn, Uncertainty and Vagueness in Knowledge-Based Systems, Springer-Verlag, 1991.

    Book  MATH  Google Scholar 

  29. J. Lawton, Multiple Spacecraft Elementary Formation Maneuvers, PhD thesis, Brigham Young University, Provo, UT 84602, 2000.

    Google Scholar 

  30. J. Lawton, B. Young, and R. Beard, “A decentralized approach to elementary formation maneuvers”, IEEE Trans. Robotics and Automation, to appear.

    Google Scholar 

  31. E. Levina and P. Bickel, “The Earth Mover’s Distance is the Mallow’s Distance: Some Insights From Statistics”, Proc. IEEE 8th Int’l Conf. on Computer Vision, Vol. II: 251–256, July 9–12 2001.

    Google Scholar 

  32. M.A. Lewis and K.-H. Tan, “High precision formation control of mobile robots using virtual structures”, Autonomous Robots, 4: 387–403, 1997.

    Article  Google Scholar 

  33. S.–M. Li, J. D. Boskovic, and R. K. Mehra, “Globally stable automatic formation flight control in two dimensions”, 2007 AIAA Guidance, Navigation, and Control Conf., 2001.

    Google Scholar 

  34. J. Lygeros, C. Tomlin, S. Sastry, “Controller for reachability specifications for hybrid systems”, Automatica, March 1999.

    Google Scholar 

  35. R. Mahler, “Approximate multi–sensor, multi–target detection, tracking, and target identification using a multitarget first–order moment statistic”, submitted to IEEE Trans. AES, 2001.

    Google Scholar 

  36. R. Mahler, An Introduction to Multisource–Multitarget Statistics and Its Applications, Lockheed Martin Technical Monograph, 104 pages, 2000.

    Google Scholar 

  37. R. Mahler (2001) “Multitarget moments and their application to multi–target tracking”, Proc. Workshop on Estimation, Tracking, and Fusion: A Tribute to Yaakov Bar–Shalom, May 17, 2001, Naval Postgraduate School, Monterey CA, pp. 134–166, ISBN 0–9648–3124–4

    Google Scholar 

  38. R. Mahler (1996) “Representing Rules as Random Sets, I: Statistical Correlations Between Rules”, Information Sciences, Vol. 88, pp. 47–68

    Article  MathSciNet  Google Scholar 

  39. R. Mahler (1996) “Representing Rules as Random Sets, II: Iterated Rules”, Int’ Jour. Intelligent Sys., Vol. 11, pp. 583–610

    Article  MATH  Google Scholar 

  40. R. Mahler, “Random set theory for target tracking and identification”, in D.L. Hall and J. Llinas (eds.), Handbook of Multisensor Data Fusion, CRC Press, Boca Raton FL, pp. 14–1 to 14–133, 2001.

    Google Scholar 

  41. R. Mahler, “A theoretical foundation for the Stein–Winter ‘Probability Hypothesis Density (PHD)’ multitarget tracking approach”, Proc. 2000 MSS Nat’l Symp. on Sensor and Data Fusion, Vol. I (Unclassified), San Antonio TX, Infrared Information Analysis Center, pp. 99–118, 2000.

    Google Scholar 

  42. G. Mathéron, Random Sets and Integral Geometry, J. Wiley, 1975.

    MATH  Google Scholar 

  43. C.R. McInnes, “Autonomous ring formation for a planar constellation of satellites”, J. of Guidance, Control and Dynamics, 18: 1215–1217, 1995.

    Article  MATH  Google Scholar 

  44. T. McLain and R. Beard, “Cooperative rendezvous of multiple unmanned air vehicles”, Proc. AIAA Guidance, Navigation and Control Confi, Denver, CO, August 2000.

    Google Scholar 

  45. J.E. Moyal, “The general theory of stochastic population processes”, Acta Mathematica, 108: 1–31, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Musick, K. Kastella, and R. Mahler, “A practical implementation of joint multitarget probabilities”, SPIE Proc, 3374: 26–37, 1998.

    Article  Google Scholar 

  47. N. Portenko, H. Salehi, and A. Skorokhod, “On optimal filtering of multi–target tracking systems based on point processes observations”, Random Operators and Stochastic Equations, 1: 1–34, 1997.

    Article  MathSciNet  Google Scholar 

  48. A. W. Proud, M. Pachter, and J. J. D’Azzo, “Close formation flight control”, AIAA Guidance, Navigation, and Control Confi, pp. 1231–1246, Portland, OR, August 1999.

    Google Scholar 

  49. B.D. Ripley, “Locally finite random sets: foundations for point process theory”, Annals of Prob., 4: 983–994, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Rouchon, M. Fliess, J. Lévine, and Ph. Martin, “Flatness, motion planning and trailer systems”, Proc. IEEE Control and Decision Confi, pp. 2700–2705, 1993.

    Google Scholar 

  51. O. Shakernia, G. Pappas and S. Sastry, “Decidable controller synthesis for classes of linear systems”, Hybrid Systems, 1999.

    Google Scholar 

  52. S. Sheikholeslam and C. A. Desoer, “Control of interconnected nonlinear dynamical systems: The platoon problem”, IEEE Trans. Auto. Control, 37: 806–810, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  53. D.L. Snyder and M.I. Miller, Random Point Processes in Time and Space, Second Edition, Springer, 1991.

    Book  Google Scholar 

  54. H.W. Sorenson, “Recursive estimation for nonlinear dynamic systems”, in J.C. Spall, editor, Bayesian Analysis of Statisical Time Series and Dynamic Models, Marcel Dekker, 1988.

    Google Scholar 

  55. H.W. Sorenson and D.L. Alspach, “Recursive Bayesian Estimation Using Gaussian Sums”, Automatica, 7: 465–479, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Srivastava, M.I. Miller, and U. Grenander, “Jump–diffusion processes for object tracking and direction finding”, Proc. 29th Allerton Confi on Communication, Control, and Computing, U. of Illinois Urbana, pp. 563–570, 1991.

    Google Scholar 

  57. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Chapman & Hall, 1989.

    MATH  Google Scholar 

  58. L.D. Stone, CA. Barlow, and T.L. Corwin, Bayesian Multiple Target Tracking, Artech House, 1999.

    MATH  Google Scholar 

  59. D. Stoyan, W.S. Kendall, and J. Meche, Stochastic Geometry audits Applications, Second Edition, John Wiley & Sons, 1995.

    Google Scholar 

  60. X. Yun, G. Alptekin, and O. Albayrak, “Line and circle formation of distributed physical mobile robots”, J. Robotic Systems, 14: 63–76, 1997.

    Article  Google Scholar 

  61. E.L. Wahspress, Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics, Prentice–Hall, 1966.

    Google Scholar 

  62. P. K. C. Wang and F. Y. Hadaegh, “Coordination and control of multiple microspacecraft moving in formation”, J. Astronautical Sciences, 44: 315–355, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahler, R., Prasanth, R. (2003). Technologies Leading to Unified Multi-Agent Collection and Coordination. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Cooperative Control: Models, Applications and Algorithms. Cooperative Systems, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3758-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3758-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5241-7

  • Online ISBN: 978-1-4757-3758-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics