Skip to main content

Arsenic metabolism in aquatic ecosystems

  • Chapter
Metal Metabolism in Aquatic Environments

Abstract

The concentration of arsenic is higher in marine organisms (Tables 6.1 and 6.2) than in freshwater organisms (Cullen and Reimer, 1989) and therefore arsenic in the sea and in marine organisms has received much greater attention than arsenic in freshwater environments; higher concentrations generally mean greater ease of study and greater fears of toxicity to be stilled. The contents of this chapter dealing with marine and freshwater environments will reflect this disproportionate attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andreae, M.O. (1977) Determination of arsenic species in natural waters. Anal. Chem. 49, 820–823.

    Article  CAS  Google Scholar 

  • Andreae, M.O. (1978) Distribution and speciation of arsenic in natural waters and some marine algae. Deep-Sea Res. 25, 391–402.

    Article  CAS  Google Scholar 

  • Andreae, M.O. (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limn. Oceanog. 24, 440–452.

    Article  CAS  Google Scholar 

  • Andreae, M.O. and Klumpp, D. (1979) Biosynthesis and release of organo-arsenic compounds by marine algae. Environ. Sci. Technol. 13, 738–741.

    Article  CAS  Google Scholar 

  • Anonymous (1977) Medical and Biological Effects of Environmental Pollutants: Arsenic, National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Armstrong, F.A.J, and Harvey, H.W. (1950) The cycle of phosphorus in the waters of the English Channel. J. Mar. Biol. Assoc. UK 29, 145–162.

    Article  CAS  Google Scholar 

  • Asano, M. and Itoh, M. (1960) Salivary poison of a marine gastropod Neptunea arthritica (Bernardi), and the seasonal variation of its toxicity. Ann. NY Acad. Sci. 90, 674–688.

    Article  CAS  Google Scholar 

  • Bebbington, G.N., Mackay, N.J., Chvojka, R. et al. (1977) Heavy metals, selenium and arsenic in nine species of Australian commercial fish. Aust. J. Mar. Freshw. Res. 28, 277–286.

    Article  CAS  Google Scholar 

  • Bettencourt, A.M.M. de and Andreae, M.O. (1991) Refractory arsenic species in estu-arine waters. Appl. Organometal. Chem. 5, 111–116.

    Article  Google Scholar 

  • Braman, R.S. and Foreback, C.C. (1973) Methylated forms of arsenic in the environment. Science 182, 1247–1249.

    Article  CAS  Google Scholar 

  • Byrne, A.R., Slejkovec, Z., Stijve, K. et al. (1995) Arsenobetaine and other arsenic species in mushrooms. Appl. Organometal. Chem. 9, 305–313.

    Article  CAS  Google Scholar 

  • Cannon, J.R., Edmonds, J.S., Francesconi, K.A. et al. (1981) Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, Panulirus cygnus, the dusky shark, Carcharhinus obscurus, and some samples of human urine. Aust. J. Chem. 34, 787–798.

    Article  CAS  Google Scholar 

  • Cantoni, G.L. (1952) The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J. Am. Chem. Soc. 74, 2942–2943.

    Article  CAS  Google Scholar 

  • Challenger, F. (1945) Biological methylation. Chem. Revs 36, 315–361.

    Article  CAS  Google Scholar 

  • Challenger, F. (1951) Biological methylation. Adv. Enzymol. 12, 429–491.

    CAS  Google Scholar 

  • Challenger, F., Higginbottom, C. and Ellis, L. (1933) The formation of organo-met-alloid compounds by microorganisms. Part 1. Trimethylarsine and dimethyl-ethylarsine. J. Chem. Soc. 95–101.

    Google Scholar 

  • Cooney, R.V. and Benson, A.A. (1980) Arsenic metabolism in Homarus americanus. Chemosphere 9, 335–341.

    Article  CAS  Google Scholar 

  • Cullen, W.R. and Dodd, M. (1989) Arsenic speciation in clams of British Columbia. Appl. Organometal. Chem. 3, 79–88.

    Article  CAS  Google Scholar 

  • Cullen, W.R. and Reimer, K.J. (1989) Arsenic speciation in the environment. Chem. Revs 89, 713–764.

    Article  CAS  Google Scholar 

  • Cullen, W.R., Harrison, L.G., Li, H. and Hewitt, G. (1994) Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa penicu-lus.Appl. Organometal. Chem. 8, 313–324.

    Article  CAS  Google Scholar 

  • Dhandhukia, M.M. and Seshadri, K. (1969) Arsenic content in marine algae. Phykos 8, 108–111.

    Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1981) Arseno-sugars from brown kelp (Ecklo-nia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289, 602–604.

    Article  CAS  Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1983) Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and NMR spectra. J. Chem. Soc, Perkin Transactions 1, 2375–2382.

    Article  Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1987a) Transformations of arsenic in the marine environment. Experientia 43, 553–557.

    Article  CAS  Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1987b) Trimethylarsine oxide in estuary catfish (Cnidoglanis macrocephalus) and school whiting (Sillago bassensis) after oral administration of sodium arsenate; and as a natural component of estuary catfish. Sei. Total Environ. 64, 317–323.

    Article  CAS  Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1988) The origin of arsenobetaine in marine animals. Appl. Organometal. Chem. 2, 297–302.

    Article  CAS  Google Scholar 

  • Edmonds, J.S., Francesconi, K.A., Cannon, J.R. et al. (1977) Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus (George). Tetrahedron Letts 18, 1543–1546.

    Article  Google Scholar 

  • Edmonds, J.S., Francesconi, K.A. and Hansen, J.A. (1982) Dimethyloxarsylethanol from anaerobic decomposition of brown kelp Ecklonia radiata: a likely precursor of arsenobetaine in marine fauna. Experientia 38, 643–644.

    Article  CAS  Google Scholar 

  • Edmonds, J.S., Shibata, Y., Francesconi, K.A. et al. (1992) Arsenic lipids in the digestive gland of the western rock lobster Panulirus cygnus: an investigation by HPLC ICP-MS. Sei. Total Environ. 122, 321–335.

    Article  CAS  Google Scholar 

  • Edmonds, J.S., Francesconi, K.A. and Stick, R.V. (1993) Arsenic compounds from marine organisms. Nat. Prod. Reps 10, 421–428.

    Article  CAS  Google Scholar 

  • Egaas, E. and Braekkan, O.R. (1977) The arsenic content of some Norwegian fish products. Fiskeridirektoratets Skrifler Serie Ernœring 1, 93–98.

    CAS  Google Scholar 

  • Falconer, CR., Shepherd, R.J., Pirie, J.M. and Topping, G. (1983) Arsenic levels in fish and shellfish from the North sea. J. Exper. Mar. Biol Ecol. 71, 193–203.

    Article  CAS  Google Scholar 

  • Fänge, R. (1960) The salivary gland of Neptunea antiqua. Anns NY Acad. Sci. 90, 689–694.

    Article  Google Scholar 

  • Francesconi, K.A. and Edmonds, J.S. (1987) Accumulation of arsenobetaine from seawater by the mussel (Mytilus edulis), in Heavy Metals in the Environment, Vol. 2, (eds S.E. Lindberg and T.C. Hutchinson), CEP Consultants, Edinburgh, pp. 71–73.

    Google Scholar 

  • Francesconi, K.A. and Edmonds, J.S. (1993) Arsenic in the sea. Oceanog. Mar. Biol. Ann. Rev. 31, 111–151.

    Google Scholar 

  • Francesconi, K.A. and Edmonds, J.S. (in press) Arsenic and marine organisms. Adv. Inorg. Chem.

    Google Scholar 

  • Francesconi, K.A., Edmonds, J.S. and Hatcher, B.G. (1988) Examination of the arsenic constituents of the herbivorous marine gastropod Tectus pyramis: isolation of tetramethylarsonium ion. Comp. Biochem. Physiol. 90C, 313–316.

    CAS  Google Scholar 

  • Francesconi, K.A., Edmonds, J.S. and Stick, R.V. (1989) Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Sei. Total Environ. 79, 59–67.

    Article  CAS  Google Scholar 

  • Francesconi, K.A., Stick, R.V. and Edmonds J.S. (1990) Glycerylphosphorylarseno-choline and phosphatidylarsenocholine in yelloweye mullet (Aldrichetta forsteri) following oral administration of arsenocholine. Experientia 46, 464–466.

    Article  CAS  Google Scholar 

  • Francesconi, K.A., Edmonds, J.S., Stick, R.V. et al. (1991a) Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of amino-3-[5′-deoxy-5′-(dimethylarsinoyl)ribosyloxy]propane-l-sulphonic acid. J. Chem. Soc, Perkin Transactions 1, 2707–2716.

    Article  Google Scholar 

  • Francesconi, K.A., Stick, R.V. and Edmonds, J.S. (1991b) An arsenic-containing nucleoside from the kidney of the giant clam, Tridacna maxima. J. Chem. Soc, Chem. Commun. 928–929.

    Google Scholar 

  • Francesconi, K.A., Edmonds, J.S. and Stick, R.V. (1992a) Arsenic compounds from the kidney of the giant clam Tridacna maxima: Isolation and identification of an arsenic-containing nucleoside. J. Chem. Soc, Perkin Transactions 1, 1349–1357.

    Article  Google Scholar 

  • Francesconi, K.A., Edmonds, J.S. and Stick, R.V. (1992b) Arsenocholine from anaerobic decomposition of a trimethylarsonioriboside. Appl. Organometal. Chem. 6, 247–249.

    Article  CAS  Google Scholar 

  • Francesconi, K.A., Edmonds, J.S. and Stick, R.V. (1994) Synthesis, NMR spectra and chromatographic properties of five trimethylarsonioribosides. Appl. Organometal. Chem. 8,517–523.

    Article  CAS  Google Scholar 

  • Gailer, J., Francesconi, K.A., Edmonds, J.S. and Irgolic, K.J. (1995) Metabolism of arsenic compounds by the blue mussel Mytilus edulis after accumulation from seawater spiked with arsenic compounds. Appl. Organometal. Chem. 9, 341–355.

    Article  CAS  Google Scholar 

  • Glover, J.W. (1979) Concentrations of arsenic, selenium and ten heavy metals in school shark, Galeorhinus australis (Macleay) and gummy shark, Mustelus antarcticus (Günther), from south-eastern Australian waters. Aust. J. Mar. Freshwater Res. 30, 505–510.

    Article  CAS  Google Scholar 

  • Gohda, S. (1975) Valence states of arsenic and antimony in sea water. Bull. Chem. Soc. Jap. 48, 1213–1216.

    Article  CAS  Google Scholar 

  • Gschwend P.M., MacFarlane, J.K and Newman, K.A. (1985) Volatile halogenated organic compounds released into seawater from temperate marine macroalgae. Science 111, 1033–1035.

    Article  Google Scholar 

  • Hall, R.A., Zook, E.G. and Meaburn, G.M. (1978) National Marine Fisheries Service Survey of Trace Elements in the Fishery Resource, NOAA Technical Report NMFS SSRF-721, 313pp.

    Google Scholar 

  • Hanaoka, K., Tagawa, S. and Kaise, T. (1992) The fate of organoarsenic compounds in marine ecosystems. Appl. Organometal. Chem. 6, 139–146.

    Article  CAS  Google Scholar 

  • Howard, A.G. and Comber, S.D.W. (1989) The discovery of hidden arsenic species in coastal waters. Appl. Organometal. Chem. 3, 509–514.

    Article  CAS  Google Scholar 

  • Ishida, Y. and Kadota, H. (1967) Isolation and identification of dimethyl-ß-propio-thetin from Gyrodinium cohnii. Agric. Biol. Chem. 31, 756–757.

    Article  CAS  Google Scholar 

  • Jin, K., Hayashi, T., Shibata, Y. and Morita, M. (1988) Arsenic-containing ribofura-nosides and dimethylarsinic acid in green seaweed, Codium fragile. Appl. Organometal. Chem. 2, 365–369.

    Article  CAS  Google Scholar 

  • Johnson, D.L. (1972) Bacterial reduction of arsenate in sea water. Nature 240, 44–45.

    Article  CAS  Google Scholar 

  • Johnson, D.L. and Burke, R.M. (1978) Biological mediation of chemical speciation. II. Arsenate reduction during marine phytoplankton blooms. Chemosphere 7, 645–648.

    Article  CAS  Google Scholar 

  • Johnson, D.L. and Pilson, M.E.Q. (1972) Arsenate in the western North Atlantic and adjacent regions. J. Mar. Res. 30, 140–149.

    CAS  Google Scholar 

  • Kennedy, V.S. (1976) Arsenic concentrations in some coexisting marine organisms from Newfoundland and Labrador. J. Fish. Res. Board Can. 33, 1388–1393.

    Article  CAS  Google Scholar 

  • Klumpp, D.W. (1980) Characteristics of arsenic accumulation by the seaweeds Fucus spiralis and Ascophyllum nodosum. Mar. Biol. 58, 257–264.

    Article  CAS  Google Scholar 

  • Kurosawa, S., Yasuda, K., Taguchi, N. et al. (1980) Identification of arsenobetaine, a water soluble organo-arsenic compound in muscle and liver of a shark, Prionace glaucus. Agric. Biol. Chem. 44, 1993–1994.

    Article  CAS  Google Scholar 

  • Lancaster, R.J., Coup, M.R. and Hughes, J.W. (1971) Toxicity of arsenic present in lakeweed. NZ Vet. J. 19, 141–145.

    CAS  Google Scholar 

  • Larsen, E.H., Pritzel, G. and Hansen, S.H. (1993) Speciation of eight arsenic compounds in human urine by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization. J. Anal. Atom. Spectr. 8, 557–563.

    Article  CAS  Google Scholar 

  • Lawrence, J.F., Michalik, P., Tarn, G. and Conacher, H.B.S. (1986) Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. J. Agric. Food Chem. 34, 315–319.

    Article  CAS  Google Scholar 

  • Leatherland, T.M. and Burton, J.D. (1974). The occurrence of some trace metals in coastal organisms with particular reference to the Solent region. J. Mar. Biol. Assoc. UK 54, 457–468.

    Article  CAS  Google Scholar 

  • Lovelock, J.E. (1975) Natural halocarbons in the air and in the sea. Nature 256, 193–194.

    Article  CAS  Google Scholar 

  • Lunde, G. (1970) Analysis of arsenic and selenium in marine raw materials. J Sci. Food Agric. 21, 242–247.

    Article  CAS  Google Scholar 

  • Luten, J.B., Riekwel-Booy, G. and Rauchbaar, A. (1982) Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man. Environ. Health Persp. 45, 165–170.

    Article  CAS  Google Scholar 

  • Maher, W.A. and Clarke, S.M. (1984) The occurrence of arsenic in selected marine macroalgae from two coastal areas of South Australia. Mar. Polin Bull. 15, 111–112.

    Article  CAS  Google Scholar 

  • McBride, B.C. and Wolfe, R.S. (1971) Biosynthesis of dimethylarsine by methanobacterium. Biochemistry 10, 4312–4317.

    Article  CAS  Google Scholar 

  • Maeda, S. (1994) Biotransformation of arsenic in the freshwater environment, in Arsenic in the Environment. Part 1: Cycling and Characterization, (ed. J.O. Nriagu), John Wiley & Sons, New York, pp. 155–187.

    Google Scholar 

  • Maugh, T.H. II (1979) It isn’t easy being king. Science 203, 637.

    Article  Google Scholar 

  • Morita, M. and Edmonds, J.S. (1992) Determination of arsenic species in environmental and biological samples. Pure Appl. Chem. 64, 575–590.

    Article  Google Scholar 

  • Morita, M. and Shibata, Y. (1987) Speciation of arsenic compounds in marine life by high performance liquid chromatography combined with inductively coupled argon plasma atomic emission spectrometry. Anal. Sci. 3, 575–577.

    Article  CAS  Google Scholar 

  • Morita, M. and Shibata, Y. (1988) Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 17, 1147–1152.

    Article  CAS  Google Scholar 

  • Morita, M. and Shibata, Y. (1990) Chemical form of arsenic in marine macroalgae. Appl. Organometal. Chem. 4, 181–190.

    Article  CAS  Google Scholar 

  • Noguchi, K. and Nakagawa, R. (1970) Arsenic in the waters and deposits of Osoreyama hot springs, Aomori Prefecture. Nippon Kagaku Zasshi 91, 127–131.

    Article  CAS  Google Scholar 

  • Norin, H., Ryhage, R., Christakopoulos, A. and Sandström, M. (1983) New evidence for the presence of arsenocholine in shrimps (Pandalus borealis) by use of pyrolysis gas chromatography-atomic absorptionjmass spectrometry. Chemosphere 12, 299–315.

    Article  CAS  Google Scholar 

  • Peden, J.D., Crothers, J.H., Waterfall, CE. and Beasley, J. (1973) Heavy metals in Somerset marine organisms. Mar. Polin Bull. 4, 7–9.

    Article  CAS  Google Scholar 

  • Phillips, D.J.H. and Depledge, M.H. (1985) Metabolic pathways involving arsenic in marine organisms: a unifying hypothesis. Mar. Environ. Res. 17, 1–12.

    Article  CAS  Google Scholar 

  • Portmann, J.E. and Riley, J.P. (1964) Determination of arsenic in sea water, marine plants and silicate and carbonate sediments. Anal. Chim. Acta 31, 509–519.

    Article  CAS  Google Scholar 

  • Powell, J.H., Powell, R.E. and Fielder, D.R. (1981) Trace element concentrations in tropical marine fish at Bougainville Island, Papua New Guinea. Water Air Soil Polin 16, 143–158.

    Article  CAS  Google Scholar 

  • Rao, Ch.K., Chinnaraj, S., Inamdar, S.N. and Untawale, A.G. (1991) Arsenic content in certain marine brown algae and mangroves from Goa coast. Indian J. Mar. Sci. 20, 283–285.

    CAS  Google Scholar 

  • Robinson, B.H., Brooks, R.R., Outred, H.A. and Kirkman, J.H. (1995) Mercury and arsenic in trout from the Taupo Volcanic Zone and Waikato River, North Island, New Zealand. Chem. Speciation Bioavail. 7, 27–32.

    CAS  Google Scholar 

  • Sanders, J.G. (1979) Microbial role in the demethylation and oxidation of methylated arsenicals in seawater. Chemosphere 3, 135–137.

    Article  Google Scholar 

  • Sanders, J.G. and Cibik, S.J. (1985) Adaptive behaviour of euryhaline phytoplankton communities to arsenic stress. Mar. Ecol. Prog. Ser. 22, 199–205.

    Article  CAS  Google Scholar 

  • Sanders, J.G. and Windom, H.L. (1980) The uptake and reduction of arsenic species by marine algae. Estuar. Coastal Mar. Sci. 10, 555–557.

    Article  CAS  Google Scholar 

  • Shibata, Y. and Morita M. (1988) A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 52, 1087–1089.

    Article  CAS  Google Scholar 

  • Shibata, Y., Sekiguchi, M., Ohtsuki, A. and Morita, M. (in press) Arsenic compounds in zoo- and phytoplanktons of marine origin. Appl. Organometal. Chem.

    Google Scholar 

  • Shiomi, K., Shinagawa, A., Igarashi, T. et al. (1984) Contents and chemical forms of arsenic in shellfishes in connection with their feeding habits, Bull. Jap. Soc. Sci. Fish. 50, 293–297.

    Article  CAS  Google Scholar 

  • Shiomi, K., Kakehashi, Y., Yamanaka, H. and Kikuchi, T. (1987) Identification of arsenobetaine and a tetramethylarsonium salt in the clam Meretrix lusoria. Appl. Organometal Chem. 1, 177–183.

    Article  CAS  Google Scholar 

  • Shiomi, K., Sugiyama, Y., Shimakura, K. and Nagashima, Y. (1995) Arsenobetaine as the major arsenic compound in the muscle of two species of freshwater fish. Appl. Organometal. Chem. 9, 105–109.

    Article  CAS  Google Scholar 

  • Smales, A.A. and Pate, B.D. (1952) The determination of sub-microgram quantities of arsenic by radioactivation. II: The determination of arsenic in sea water. Analyst 11, 188–195.

    Article  Google Scholar 

  • Stoeppler, M. and Brandt, K. (1979) Comparative studies on trace metal levels in marine biota II. Trace metals in krill, krill products and fish from the Antarctic Scotia Sea. Zeitschrift für Lebensmitteluntersuchung und Forschung 169, 95–98.

    Article  CAS  Google Scholar 

  • Sugawara, K. and Kanamori, S. (1964) The spectrophotometric determination of trace amounts of arsenate and arsenite in natural waters with special reference to phosphate determination. Bull. Chem. Soc. Jap. 37, 1358–1363.

    Article  CAS  Google Scholar 

  • Tagawa, S. and Kojima, Y. (1976) Arsenic content and its seasonal variation in seaweed. J. Shimonoseki Univ. Fish. 25, 67–74.

    CAS  Google Scholar 

  • Vahter, M. (1994) Species differences in the metabolism of arsenic compounds. Appl. Organometal. Chem. 8, 175–182.

    Article  CAS  Google Scholar 

  • Vahter, M., Marafante, E., Lindgren, A. and Dencker, L. (1982) Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74As-arsenite. Arch. Toxicol. 51, 65–11.

    Article  CAS  Google Scholar 

  • Vahter, M., Couch, R., Nermell, B. and Nilsson, R. (1995) Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol. Appl. Pharmacol. 133, 262–268.

    Article  CAS  Google Scholar 

  • Vogel, G., Woznicka, M., Gfeller, H. et al. (1990) 1(3),2-Diacylglyceryl-3(l)-O-2′-(hydroxymethyl)(N, N, N-trimethyl)-ß-alanine (DGTA): a novel betaine lipid from Ochromonas danica (Chrysophyceae). Chem. Phys. Lipids 52, 99–109.

    Article  CAS  Google Scholar 

  • Welch, A.D. and Landau, R.L. (1942) The arsenic analogue of choline as a component of lecithin in rats fed arsenocholine chloride. J. Biol. Chem. 581–588.

    Google Scholar 

  • Whyte, J.N.C. and Englar, J.R. (1983) Analysis of inorganic and organic-bound arsenic in marine brown algae. Bot. Mar. 26, 159–164.

    Article  CAS  Google Scholar 

  • Zingde, M.D., Singbai, S.Y.S. et al. (1976) Arsenic, copper, zinc and manganese in the marine flora and fauna of coastal and estaurine waters around Goa. Indian J. Mar. Sci. 5, 212–217.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edmonds, J.S., Francesconi, K.A. (1998). Arsenic metabolism in aquatic ecosystems. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics