Skip to main content

Microorganisms and the biogeochemical cycling of metals in aquatic environments

  • Chapter
Metal Metabolism in Aquatic Environments

Abstract

Microorganisms may alter the availability of metals in the environment by a variety of means. Whilst eukaryotic microorganisms can bring about certain of the various metal transformations described below, the major protagonists of metal cycling in aquatic ecosystems are prokaryotes (bacteria and archaea). The cycling of metals generally involves phase changes (usually between soluble and insoluble forms) which have major impacts on the biological availability of metals. These may produce problems of metal deficiency on the one extreme, and metal toxicity on the other. Various reviews on different aspects of this subject are available in the scientific literature. These include a concise review of metal-microbe interactions by Ford et al.1995) and a more detailed account of the same subject matter in a text by Hughes and Poole (1989). Two older review articles remain among the most regularly cited works in this area: one by Summers and Silver (1978), which focused on the role of microorganisms in metal transformations (defined as those changes involving changes in valence or changes from inorganic to covalently linked organic forms), and the second by Gadd and Griffiths (1978), which reviewed the toxicity of heavy metal to microbes. An ecological perspective of metal cycling and metal toxicity was described in the review by Duxbury (1985), while the role of microbially mediated metal transformations in bioremedia-tion of contaminated waters was reviewed by Brierley (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balashova, V.V. and Zavarzin, G.A. (1980) Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48, 635–639.

    Google Scholar 

  • Barrett, J., Hughes, M.N., Karavaiko, G.I. and Spencer, P.A. (1993) Metal Extraction by Bacterial Oxidation of Minerals, Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Barton, L.L. (1995) Sulfate-Reducing Bacteria, Plenum Press, New York.

    Google Scholar 

  • Berthelin, J. (1983) Microbial weathering processes, in Microbial Geochemistry (ed. W.E. Krumbein), Blackwell, Oxford.

    Google Scholar 

  • Blakemore, R.P. (1982) Magnetotactic bacteria. Annual Review of Microbiology 36, 217–238.

    Article  CAS  Google Scholar 

  • Brierley, C.L. (1990) Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiology Journal 8, 201–223.

    Article  CAS  Google Scholar 

  • Brock, T.D. and Gustaf son, J. (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Applied and Environmental Microbiology 32, 567–571.

    CAS  Google Scholar 

  • Brookins, D.G. (1988) Eh-pH Diagrams for Geochemistry, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Clark, D.A. and Norris, P.R. (1996) Acidimicrobium jerrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141, 785–790.

    Article  Google Scholar 

  • Corstjens, P.L.A.M., de Vrind, J.P.M., Westbroek, P. and de Vrindde Jong, E.W. (1992) Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Applied and Environmental Microbiology 58, 450–454.

    CAS  Google Scholar 

  • Davison, W., Woof, C. and Rigg, E. (1982) The dynamics of iron and manganese in a seasonally anoxic lake. Limnology and Oceanography 27, 987–1003.

    Article  CAS  Google Scholar 

  • DiSpirito, A.A. and Tuovinen, O.H. (1982) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Archives of Microbiology 133, 33–37.

    Article  CAS  Google Scholar 

  • Duxbury, T. (1985) Ecological aspects of heavy metal responses in microorganisms, in Advances in Microbial Ecology 8 (ed K.C. Marshall), Plenum, New York, pp. 185–235.

    Chapter  Google Scholar 

  • Ehrlich, H.L. (1996) Geomicrobiology, 3rd edn, Marcel Dekker, New York.

    Google Scholar 

  • Emerson, D. and Ghiorse, W.C. (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. Journal of Bacteriology 175, 7808–7827.

    CAS  Google Scholar 

  • Ford, T., Maki, J. and Mitchell, R. (1995) Metal-microbe interactions, in Bioextraction and Biodeterioration of Metals, (eds C.C. Gaylarde and H.A. Videla), Cambridge University Press, Cambridge, pp. 1–23.

    Google Scholar 

  • Geesey, G. and Jang, L. (1990) Extracellular polymers for metal binding, in Microbial Mineral Recovery (eds H.L. Ehrlich and C.L. Brierley), McGraw-Hill, New York, pp. 223–247.

    Google Scholar 

  • Gadd, G.M. and Griffiths, A.J. (1978) Microorganisms and heavy metal toxicity. Microbial Ecology 4, 303–317.

    Article  CAS  Google Scholar 

  • Ghani, B., Takai, M., Hishani, N.Z. et al. (1993) Isolation and characterisation of a Mo6+-reducing bacterium. Applied and Environmental Microbiology 59, 1176–1180.

    CAS  Google Scholar 

  • Gounot, A.-M. (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiology Reviews 14, 339–350.

    Article  CAS  Google Scholar 

  • Greene, B. and Darnall, D.W. (1990) Microbial oxygenic phototrophs (cyanobacteria and algae) for metal-ion binding, in Microbial Mineral Recovery, (eds H.L. Ehrlich and C.L. Brierley), McGraw-Hill, New York, pp. 277–302.

    Google Scholar 

  • Hallbeck, L. and Pederson, K. (1991) Autotrophic and mixotrophic growth of Gallionella ferruginea. Journal of General Microbiology 137, 2657–2661.

    CAS  Google Scholar 

  • Hughes, M.N. and Poole, R.K. (1989) Metals and Micro-organisms, Chapman & Hall, London.

    Google Scholar 

  • Johnson, D.B. (1995a) Mineral cycling by microorganisms: iron bacteria, in Microbial Diversity and Ecosystem Function, (eds D. Allsop, D.L. Hawksworth and R.R. Colwell) CAB International, Wallingford, UK, pp. 137–160.

    Google Scholar 

  • Johnson, D.B. (1995b) Acidophilic microbial communities: candidates for bioreme-diation of acidic mine effluents. International Biodeterioration & Biodegradation 35, 41–58.

    Article  CAS  Google Scholar 

  • Johnson, D.B., Bacelar-Nicolau, P., Brunn, D.F. and Roberto, F.F. (1995) Iron-oxidising heterotrophic acidophiles: ubiquitous novel bacteria in leaching environments, in Biohydrometallurgical Processing I, (eds T. Vargas, C.A. Jerez, J.V. Wiertz, and H. Toledo), University of Chile Press, Santiago, pp. 47–56.

    Google Scholar 

  • Johnson, D.B., McGinness, S. and Ghauri, M.A. (1993) Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiology Reviews 11, 63–70.

    Article  CAS  Google Scholar 

  • Johnson, D.B. and McGinness, S. (1991) Ferric iron reduction by acidophilic het-erotrophic bacteria. Applied and Environmental Microbiology 57, 207–211.

    CAS  Google Scholar 

  • Kletzin, A. and Adams, M.W.W. (1996) Tungsten in biological systems. FEMS Microbiology Reviews 18, 5–63.

    Article  CAS  Google Scholar 

  • Lewis, A.J. and Miller, J.D.A. (1977) Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Canadian Journal of Microbiology 23, 319–324.

    Article  CAS  Google Scholar 

  • Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews 55, 259–287.

    CAS  Google Scholar 

  • Lovley, D.R. (1995) Microbial reduction of iron, manganese, and other metals. Advances in Agronomy 54, 175–231.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and Phillips, E.J.P (1992) Microbial reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology 58, 850–856.

    CAS  Google Scholar 

  • Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Landa, E.R. (1991) Microbial reduction of uranium. Nature 350, 413–416.

    Article  CAS  Google Scholar 

  • Lundgren, D.G. and Dean, W. (1979) Biogeochemistry of iron, in Biogeochemical Cycling of Mineral-Forming Elements, (eds P.A. Trudinger and D.J. Swaine), Elsevier, Amsterdam, pp. 211–251.

    Chapter  Google Scholar 

  • Lyalikova, N.N. (1974) Stibiobacter senarmontii — a new antimony-oxidizing microorganism. Mikrobilogiya 43, 799–805 (English translation).

    Google Scholar 

  • Lyalikova, N.N. and Lebedeva, E.V. (1984) Bacterial oxidation of molybdenum in ore deposits. Geomicrobiology Journal 3, 307–318.

    Article  CAS  Google Scholar 

  • Macaskie, L.E. (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodégradation and bioaccumulation as a means of treating radionuclide-containing streams. CRC Critical N/68 Reviews of Biotechnology 11, 41–112.

    Article  CAS  Google Scholar 

  • Marshall, K.C. (1979) Biogeochemistry of manganese minerals, in Biogeochemical Cycling of Mineral-Forming Elements, (eds P.A. Trudinger and D.J. Swaine), Elsevier, Amsterdam, pp. 253–292.

    Chapter  Google Scholar 

  • Nealson, K.H. (1983a) The microbial iron cycle, in Microbial Geochemistry, (ed. W.E. Krumbein), Blackwell, Oxford.

    Google Scholar 

  • Nealson, K.H. (1983b) The microbial manganese cycle, in Microbial Geochemistry, (ed. W.E. Krumbein), Blackwell, Oxford.

    Google Scholar 

  • Norris, P.R. and Johnson, D.B. (1998) Acidophilic microorganisms, in Extremophiles: Microbial Life in Extreme Environments, (eds K. Horikoshi and W.D. Grant), Wiley, New York (in press).

    Google Scholar 

  • Schinner, F. and Burgstaller, W. (1989) Extraction of zinc from industrial waste by a Pénicillium sp. Applied and Environmental Microbiology 55, 1153–1156.

    CAS  Google Scholar 

  • Schlesinger, W.H. (1991) Biogeochemistry: an Analysis of Global Change, Academic Press, San Diego.

    Google Scholar 

  • Springel, D., Diels, L., Hooyberghs, L. et al. (1993) Construction and characteriza-tion of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains. Applied and Environmental Microbiology 59, 334–339.

    Google Scholar 

  • Sugio, T., Tsujita, Y., Inagaki, K. and Tano, T. (1990) Reduction of cupric ions with elemental sulphur by Thiobacillus ferrooxidans. Applied and Environmental Microbiology 56, 693–696.

    CAS  Google Scholar 

  • Summers, A.O. and Silver, S. (1978) Microbial transformations of metals. Annual Review of Microbiology, 32, 637–672.

    Article  CAS  Google Scholar 

  • Talasova, I.L, Khavski, N.N., Khairullina, R.T. et al (1995) Red mud leaching with fungal metabolites, in Biohydrometallurgical Processing I (eds T. Vargas, C.A. Jerez, J.V. Wiertz and H. Toledo), University of Chile Press, Santiago, pp. 379–384.

    Google Scholar 

  • Torma, A.E. and Gabra, G.G. (1977) Oxidation of stibnite by Thiobacillus ferrooxidans. Antonie van Leeuwenhoek 43, 1–6.

    Article  CAS  Google Scholar 

  • Volesky, B. (ed.) (1990) Biosorption of Heavy Metals, CRC Press, Boca Raton, USA.

    Google Scholar 

  • Wang, Y.T. and Shen, H. (1995) Bacterial reduction of hexavalent chromium. Journal of Industrial Microbiology 14, 159–163.

    Article  CAS  Google Scholar 

  • White, C, Wilkinson, S.C. and Gadd, G.M. (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. International Biodeterioration and Biodegradation 35, 17–40.

    Article  CAS  Google Scholar 

  • Widdel, F., Schnell, S., Heising, S. et al (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnson, D.B. (1998). Microorganisms and the biogeochemical cycling of metals in aquatic environments. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics