Skip to main content

Generating Pseudorandom Numbers

  • Chapter
Monte Carlo

Part of the book series: Springer Series in Operations Research ((ORFE))

Abstract

Every Monte Carlo experiment relies on the availability of a procedure that supplies sequences of numbers from which arbitrarily selected nonoverlapping subsequences appear to behave like statistically independent sequences and where the variation in an arbitrarily chosen subsequence of length k (≥1) resembles that of a sample drawn from the uniform distribution on the k-dimensional unit hyper-cube \({\mathcal{I}^k}\). The words “appear to behave” and “resemble” alert the reader to yet another potential source of error that arises in Monte Carlo sampling. In practice, many procedures exist for generating these sequences. In addition to this error of approximation, the relative desirability of each depends on its computing time, on its ease of use, and on its portability By portability, we mean the ease of implementing a procedure or algorithm on a variety of computers, each with its own hardware peculiarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afflerbach, L. and H. Grothe (1985). Calculation of Minkowski-reduced lattice bases, Comput, 35, 269–276.

    Article  Google Scholar 

  • Afflerbach, L. and R. Weilbächer (1989). The exact determination of rectangle discrepancy for linear congruential pseudorandom generators, Math. Comp, 53, 343–354.

    Article  Google Scholar 

  • Afflerbach, L. (1991). Private communication.

    Google Scholar 

  • Anderson, T.W. and D.A. Darling (1952). Asymptotic theory of goodness of fit criteria based on stochastic processes, Ann. Math. Statist, 23, 191–211.

    Google Scholar 

  • Anderson, T.W. and D.A. Darling (1954). A test of goodness of fit, J. Amer. Statist. Assoc, 49, 765–769.

    Article  Google Scholar 

  • André, D.A., G.L. Mullen, and H. Niederreiter (1990). Figures of merit for digital multistep pseudorandom numbers, Math. Comp, 54, 737–748.

    Google Scholar 

  • Beyer, W.A. (1972). Lattice structure and reduced bases of random vectors generated by linear recurrences, in Applications of Number Theory to Numerical Analysis, S.K. Zaremba ed., Academic Press, New York, pp. 361–370.

    Google Scholar 

  • Beyer, W.A. (1988). Private communication.

    Google Scholar 

  • Beyer, W.A., R.B. Roof, and D. Williamson (1971). The lattice structure of multiplicative congruential pseudorandom vectors, Math. Comp, 25, 345–363.

    Article  Google Scholar 

  • Borosh, I. and H. Niederreiter (1983). Optimal multipliers for pseudorandom number generation by the linear congruential method, BIT, 23, 65–74.

    Article  Google Scholar 

  • Bradley, G.H. (1993). Generating pseudorandom integers over an interval, Operations Research Department, Naval Postgraduate School, Monterey, CA.

    Google Scholar 

  • Brown, M. and H. Solomon (1979). On combining pseudorandom number generators, Ann. Statist, 7, 691–695.

    Article  Google Scholar 

  • Cassels, J.W.S. (1959). An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Couture, R. and P. L’Ecuyer (1993). On the lattice structure of certain linear congruentialsequences related to AWC/SWB generators, University of Montreal, Canada.

    Google Scholar 

  • Couture, R., P. L’Ecuyer, and S. Tezuka (1991). On the distribution of k-dimension vectors for simple and combined Tauseworthe sequences, GERAD Tech. Rep. G-91–43, Groupe d’études et de Recherche en Analyse des Décisions, Montreal, Canada.

    Google Scholar 

  • Coveyou, R.R. (1970). Random number generation is too important to be left to chance, Stud. Appl. Math, 3, 70–111.

    Google Scholar 

  • Coveyou, R.R. and R.D. MacPherson (1967). Fourier analysis of uniform random number generators, J. ACM, 14, 100–119.

    Article  Google Scholar 

  • Devaney, R.L. (1986). An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • Dieter, U. (1971). Pseudo-random numbers: the exact distribution of pairs, Math. Comp, 29, 827–833.

    Article  Google Scholar 

  • Dieter, U. (1975). How to calculate shortest vectors in a lattice, Math. Comp, 29, 827–833.

    Article  Google Scholar 

  • Dieter, U. and J.H. Ahrens (1977). Pseudorandom Numbers, University of Graz, Austria. Durst, M. (1989). Private communication.

    Google Scholar 

  • Dwass, M. (1958). On several statistics related to empirical distribution functions, Ann. Math Statist, 29, 188–191.

    Article  Google Scholar 

  • Eichenauer, J., J.H. Grothe, and J. Lehn (1988). Marsaglia’s lattice test and nonlinear congruential pseudorandom number generators, Metrika, 35, 241–240.

    Article  Google Scholar 

  • Eichenauer, J. and J. Lehn (1986). A non-linear congruential pseudorandom number generator, Statist. Papers, 27, 315–326.

    Google Scholar 

  • Eichenauer, J. and J. Lehn (1987). On the structure of quadratic congruential sequences, Manuscripta Math, 58, 129–140.

    Article  Google Scholar 

  • Eichenauer, J., J. Lehn, and A. Topuzoglu (1988). A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp, 51, 757–759.

    Article  Google Scholar 

  • Eichenauer-Herrmann, J. and H. Niederreiter (1991). On the discrepancy of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math, 34, 243–249.

    Article  Google Scholar 

  • Eichenauer-Herrmann, J. and H. Niederreiter (1992). Lower bounds for the discrepancy of inversive congruential pseudorandom numbers with power of two modulus, Math. Comp, 58, 775–779.

    Article  Google Scholar 

  • Ferrenberg, A.M., D.P. Landau and Y.J. Wong (1992). Monte Carlo simulations: hidden errors from “good” random number generators, Phys. Rev. Letters, 69, 3382–3384.

    Article  Google Scholar 

  • Fishman, G.S. (1990). Multiplicative congruential random number generators with modulus 2fl: an exhaustive analysis for ß = 32 and a partial analysis for ß = 48, Math. Comp, 54, 331–334.

    Google Scholar 

  • Fishman, G.S. and L.R. Moore (1982). A statistical evaluation of multiplicative congruential random number generators with modulus 231 — 1, J. Amer. Statist. Assoc, 77, 129–136.

    Google Scholar 

  • Fishman, G.S. and L.R. Moore (1986). An exhaustive analysis of multiplicative congruential random number generators with modulus 231 — 1, SIAM J. Sci. and Statist. Comput, 7, 24–45.

    Article  Google Scholar 

  • Fushimi, M. (1983). A reciprocity theorem on the random number generation based on m-sequences and its applications (in Japanese), Trans. Inform. Process Soc. Japan, 24, 576–579.

    Google Scholar 

  • Fushimi, M. (1989). An equivalence relation between Tausworthe and GFSR sequences and applications, Appl. Math. Letters, 2, 135–137.

    Article  Google Scholar 

  • Fushimi, M. (1990). Random number generation with the recursion X, = X_31,$ Xf_3q, J. Comp. Appl. Math, 31, 105–118.

    Article  Google Scholar 

  • Fushimi, M. and S. Tezuka (1983). The k-distribution of the generalized feedback shift register pseudorandom numbers, Comm. ACM, 26, 516–523.

    Article  Google Scholar 

  • Hörmann, W. (1994). Personal communication.

    Google Scholar 

  • Hörmann, W. and G. Derflinger (1993). A portable random number generator well suited for the rejection method, ACM Trans. Math. Software, 19, 489–495.

    Article  Google Scholar 

  • Hull, T.T. and A.R. Dobell (1962). Random number generators, SIAM Rev, 4, 230–254. Jannson, B. (1966). Random Number Generators, Almqvist and Wiksell, Stockholm.

    Google Scholar 

  • Keifer, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math, 11, 649–660.

    Article  Google Scholar 

  • Knuth, D. (1981). The Art of Computer Programming: Semi-numerical Algorithms, Vol. 2, 2nd ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • L’Ecuyer, P. (1986). Efficient and portable combined pseudo-ramdom number generators

    Google Scholar 

  • Rapport de recherche. DIUL-RR-8612, Université Laval, Quebec, Canada.

    Google Scholar 

  • L’Ecuyer, P. (1988). Efficient and portable combined pseudo-random number generators,Comm. ACM, 31, 742–749, 774.

    Google Scholar 

  • L’Ecuyer, P. (1990). Random numbers for simulation, Comm. ACM, 33, 85–97. L’Ecuyer, P. (1991). Private communication.

    Google Scholar 

  • L’Ecuyer, P. and F. Blouin (1988). Linear congruential generators or order k > 1. 1988Winter Simulation Conference Proceedings, IEEE Press, New York, pp. 432–439.

    Google Scholar 

  • L’Ecuyer, P. and F. Blouin (1990). Multiple recursive and matrix linear congruential genera-tors, Départment d’Informatique, Université Laval.

    Google Scholar 

  • L’Ecuyer, P. and S. Tezuka (1991). Structural properties for two classes of combined random number generators, Math. Comp, 57, 735–746.

    Google Scholar 

  • Lehmer, D.H. (1951). Mathematical methods in large-scale computing methods Ann. Comp. Lab. 26 141–146

    Google Scholar 

  • Levene, H. (1952). On the power function of tests of randomness based on runs up and down, Ann. Math. Statistics, 23, 34–56.

    Article  Google Scholar 

  • Lewis, P.A., A.S. Goodman, and J.M. Miller (1969). A pseudorandom number generator for the System/360, IBM Syst. J, 8, 136–146.

    Article  Google Scholar 

  • Lewis, T.G. and W.H. Payne (1973). Generalized feedback shift register pseudorandom number algorithms, J. ACM, 20, 456–468.

    Article  Google Scholar 

  • Lidl, R. and H. Niederreiter (1986). Introduction to Finite Fields and Their Applications, Cambridge University Press, New York.

    Google Scholar 

  • Lipson, J.D. (1981). Elements of Algebra and Algebraic Computing, Addison-Wesley, Reading, MA.

    Google Scholar 

  • MacLaren, M.D. and G. Marsaglia (1965). Uniform random number generators J. Assoc. Comp. Mach. 12 83–89

    Google Scholar 

  • McLeod, A.I. (1985). A remark on Algorithm AS183, an efficient and portable pseudorandom number generator, Appl. Statist, 34, 198–202.

    Article  Google Scholar 

  • Marsaglia, G. (1968). Random numbers fall mainly in the planes Proc. National Academy of Sciences U.S.A. 61 25–28

    Google Scholar 

  • Marsaglia, G. (1972). The structure of linear congruential sequences, in Applications of Number Theory to Numerical Analysis, S.K. Zaremba ed., Academic Press, New York, pp. 249–285.

    Google Scholar 

  • Marsaglia, G., B. Narsimhan and A. Zaman (1990). A random number generator for PC’s Comput. Phys. Commun. 60 345–349

    Google Scholar 

  • Marshall, A.W. and I.Olkin (1977). Majorization in multivariate distributions, Ann. Statist, 2, 1189–1200.

    Article  Google Scholar 

  • Mullen, G.L. and H. Niederreiter (1987). Optimal characteristic polynomials for digital multistep pseudorandom numbers, Comput, 39, 155–163.

    Article  Google Scholar 

  • Niederreiter, H. (1977). Pseudo-random numbers and optimal coefficients, Adv. Math, 26, 99–181.

    Article  Google Scholar 

  • Niederreiter, H. (1978a). The serial test for linear congruential pseudo-random numbers, Bull. Amer. Math. Soc., 84, 273–274.

    Article  Google Scholar 

  • Niederreiter, H. (1978b). Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., 84, 957–1041.

    Article  Google Scholar 

  • Niederreiter, H. (1982). Statistical tests for Tausworthe pseudo-random numbers, in Probability and Statistical Inference, W. Grossmann et al. eds. Reidel, Dordrecht, pp. 265274.

    Google Scholar 

  • Niederreiter, H. (1985). The serial test for pseudo-random numbers generated by the linear congruential method, Numer. Math., 46, 51–68.

    Google Scholar 

  • Niederreiter, H. (1987). A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Stat. Comput., 8, 1035–1051.

    Article  Google Scholar 

  • Niederreiter, H. (1988a). The serial test for digital k-step pseudorandom numbers, Mathematical J. Okayama University, 30, 93–119.

    Google Scholar 

  • Niederreiter, H. (1988b). Statistical independence of nonlinear congruential pseudorandom numbers, Monatshefte fir Mathematik, 106, 149–159.

    Article  Google Scholar 

  • Niederreiter, H. (1989). The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp, 52, 135–144.

    Article  Google Scholar 

  • Niederreiter, H. (1992). Recent trends in random number and random vector generation, Ann. Oper. Res, 31, 323–346.

    Article  Google Scholar 

  • Park, S.K. and K.W. Miller (1988). Random number generators: good ones are hard to find, Comm. ACM, 31, 1192–1201.

    Article  Google Scholar 

  • Payne, W.H J.R. Rabung and T.P Bogyo (1969). Coding the Lehmer pseudorandom number generator, Comm, ACM,12 85–86.

    Google Scholar 

  • Schrage, L. (1979). A more portable fortran random number generator, ACM Trans. Math. Software, 5, 132–138.

    Article  Google Scholar 

  • Smith, C.S. (1971). Multiplicative pseudorandom number generators with primal modulus, J. ACM, 18, 586–593.

    Article  Google Scholar 

  • Tausworthe, R.C. (1965). Random numbers generated by linear recurrence modulo two, Math. Comp, 19, 201–209.

    Article  Google Scholar 

  • Tezuka, S. and P. L’Ecuyer (1991). Efficient and portable combined Tausworthe randomnumber generators, ACM Trans. Modeling and Comput. Simul, 2, 99–112.

    Article  Google Scholar 

  • Whittlesley, J.R.B (1968). A comparison of the correlational behavior of random numbergenerators for the IBM 360, Comm. ACM,11 641–644.

    Google Scholar 

  • Wichmann, B.A. and I.D. Hill (1982). An efficient and portable pseudo-random numbergenerator, Appl Statist, 31, 188–190; correction, (1984) Appl. Statist, 33, 123.

    Article  Google Scholar 

  • Wolfowitz, J. (1944). Asymptotic distribution of runs up and down, Ann. Math. Statistics, 7, 1052–1057.

    Google Scholar 

  • Zierler, N. and J. Brillhart (1968). On primitive trinomials (mod 2), I, Inform. Contr, 13, 541–554.

    Article  Google Scholar 

  • Zierler, N. and J. Brillhart (1969). On primitive trinomials (mod 2), II, Inform. Contr, 14, 566–569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (1996). Generating Pseudorandom Numbers. In: Monte Carlo. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2553-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2553-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2847-4

  • Online ISBN: 978-1-4757-2553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics