Skip to main content

The β Sheet ⇌ Coil Transition of Polypeptides, as Determined by Circular Dichroism

  • Chapter
Circular Dichroism and the Conformational Analysis of Biomolecules

Abstract

Circular dichroism (CD) has seen three decades of use in the study of the ß sheet ⇌ coil transition in polypeptides (Sarkar and Doty, 1966; Townend et al.,1966). The focus here will be on the application of CD to the ß sheet ⇌ coil transition in three prototypical systems in which the transition is induced in a homopolypeptide: poly(l-lysine) [poly (Lys)], poly(l-tyrosine) [poly(Tyr)], and poly(S-carboxymethyl-l-cysteine) [poly(CM-cys)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, A. J., Hoving, R., Potter, J., Wells, M., and Fasman, G. D., 1968, Circular dichroism of polypeptides. Poly(hydroxyethyl-L-glutamine) compared to poly(L-glutamic acid), J. Am. Chem. Soc. 90: 4736–4738.

    Article  PubMed  CAS  Google Scholar 

  • Applequist, J.,1982, Theoretical wrr* absorption and circular dichroic spectra of polypeptide 13-structures, Biopolymers 21: 779–795.

    Google Scholar 

  • Auer, H. E., and Miller-Auer, H., 1982, Two classes of 13-pleated sheet conformation in poly(L-tyrosine): Evidence from solvent perturbation difference spectroscopy, Biopolymers 21: 1245–1259.

    Article  CAS  Google Scholar 

  • Auer, H. E., and Miller-Auer, H., 1986, Dynamics of the disordered—fi transition in poly(L-tyrosine) determined by stopped-flow spectrometry, Biopolymers 25: 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  • Balcerski, J. S., Pysh, E. S., Bonora, G. M., and Toniolo, C., 1976, Vacuum ultraviolet circular dichroism of 13-forming alkyl oligopeptides, J. Am. Chem. Soc. 98: 3470–3473.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, D. R., and Ullman, R., 1980, Contraction of polystyrene molecules in dilute solution below the O temperature, Macromolecules 13: 392–396.

    Article  CAS  Google Scholar 

  • Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of 13, (3-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.

    Article  PubMed  CAS  Google Scholar 

  • Chu, B., and Wang, Z., 1989, Transition of linear polymer dimensions from O to collapsed regime. Intrinsic viscosity, Macromolecules 22: 380–383.

    Article  CAS  Google Scholar 

  • Chu, B., Xu, R., and Zuo, J., 1988, Transition of polystyrene in cyclohexane from the O to the collapsed state, Macromolecules 21: 273–274.

    Article  CAS  Google Scholar 

  • Cosani, A., Palumbo, M., and Terbojevich, M., 1974, A potentiometric and CD study on the I3-random coil transition of poly-L-tyrosine in aqueous solution, Int. J. Peptide Protein Res. 6: 457–463.

    Article  CAS  Google Scholar 

  • Davidson, B., and Fasman, G. D., 1967, The conformational transitions of uncharged poly-L-lysine, a helix—random coil—(3 structure, Biochemistry 6: 1616–1629.

    Article  PubMed  CAS  Google Scholar 

  • Domard, A., and Rinaudo, M., 1981, Polyelectrolyte complexes: Interaction between poly(L-lysine) and polyanions with various charge densities and degrees of polymerization, Macromolecules 14: 620–625.

    Article  CAS  Google Scholar 

  • Fukada, K., and Maeda, H., 1990, Correlation between the rate of chain folding and the stability of the 13-structure of a polypeptide, J. Phys. Chem. 94: 3843–3847.

    Article  CAS  Google Scholar 

  • Fukada, K., Maeda, H., and Ikeda, S., 1987a, Factors affecting the stability of the 13-structure of poly(Scarboxymethyl-L-cysteine), Int J. Biol. Macromol. 9: 87–94.

    Article  CAS  Google Scholar 

  • Fukada, K., Maeda, H., and Ikeda, S., 1987b, Temperature-dependent 13 structure—random coil conversion of poly[S-(carboxymethyl)-L-cysteinel, Polymer 28: 1887–1892.

    Article  CAS  Google Scholar 

  • Fukada, K., Hattori, H., Maeda, H., and Ikeda, S., 1988, Diverse kinetic behaviors of the p-structure formation. A study of poly(S-carboxymethyl-L-cysteine), Bull. Chem. Soc. Jpn. 61: 2651–2653.

    Article  CAS  Google Scholar 

  • Fukada, K., Maeda, H., and Ikeda, S., 1989, Kinetics of pH-induced random coil—p-structure conversion of poly[S-(Carboxymethyl)-L-cysteine], Macromolecules 22: 640–645.

    Article  CAS  Google Scholar 

  • Geddes, A. J., Parker, K. D., Atkins, E. D. T., and Beighton, E., 1968, “Cross-3” conformation in proteins, J. Mol. Biol. 32:343–358.

    Google Scholar 

  • Granados, E. N., and Bello, J., 1979, Alkylated poly(amino acids). I. Conformational properties of poly(NE-trimethyl-L-lysine) and poly(M-trimethyl-L-ornithine), Biopolymers 18: 1479–1486.

    Article  CAS  Google Scholar 

  • Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, R., Schwaner, R. C., and Hermans, J., Jr., 1974, Beta poly(L-lysine). Model system for biological self-assembly, J. Mol. Biol. 90: 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Higashi, N., Shimoguchi, M., and Niwa, M., 1992, Stabilization and facilitated formation of a ß-structure polypeptide by a poly(L-glutamic acid)-functionalized monolayer on water, Langmuir 8: 1509–1510.

    Article  CAS  Google Scholar 

  • Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka, E., and Yang, J. T., 1966, Optical rotatory dispersion and circular dichroism of the p-form of silk fibroin in solution, Proc. Natl. Acad. Sci. USA 55: 1175–1182.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, S., Fukutome, A., Imae, T., and Yoshida, T., 1979, Circular dichroism and the pH-induced p-coil transition of poly(S-carboxymethyl-L-cysteine) and its side-chain homolog, Biopolymers 18: 335–349.

    Article  CAS  Google Scholar 

  • Ikeda, S., Yoshida, T., and Imae, T., 1981, Induced circular dichroism and mode of binding of acridine orange adsorbed on p-form poly(S-carboxyethyl-L-cysteine) in aqueous solutions, Biopolymers 20: 2395–2411.

    Article  CAS  Google Scholar 

  • Itoh, K., Foxman, B. M., and Fasman, G. D., 1976, The two 3 forms of poly(L-glutamic acid), Biopolymers 15: 419–455.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, H., and Stockmayer, W. H., 1950, Intramolecular reaction in polycondensations. I. The theory of linear systems, J. Chem. Phys. 18: 1600–1606.

    Article  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1978, Circular dichroism spectroscopy and the vacuum ultraviolet region, Annu. Rev. Phys. Chem. 29: 93–114.

    Article  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1988, Secondary structure of proteins through circular dichroism spectroscopy, Annu. Rev. Biophys. Biophys. Chem. 17: 145–166.

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi, K., and Akutsu, H., 1981, Hydrodynamic behavior and molecular conformation of poly(Llysine HBr) in carbonate buffer solution, Biopolymers 20: 345–357.

    Article  CAS  Google Scholar 

  • Kimura, M., Maeda, H., and Ikeda, S., 1988, Stability of the folded-chain ß-structure of a homopolypeptide based on time-resolved potentiometric titrations, Biophys. Chem. 30: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, I. M., and Harris, J. U., 1971, Macromolecules—small molecule interactions. Strong binding by intramolecular cross-linked polylysine, Biochemistry 10: 923–926.

    Article  PubMed  CAS  Google Scholar 

  • Krivacic, J. R., and Urry, D. W., 1970, Ultraviolet and visible refractive indices of spectro-quality solvents, Anal. Chem. 42: 596–599.

    Article  CAS  Google Scholar 

  • Kurotu, T., and Kasagi, M., 1983, p-Form of poly(a-L-glutamic acid) induced by cadmium ion in aqueous solution, Polym. J. 15: 397–399.

    Google Scholar 

  • Li, L. L., and Spector, A., 1969, The circular dichroism of p-poly-L-lysine, J. Am. Chem. Soc. 81: 220–222.

    Article  Google Scholar 

  • McKnight, R. P., and Auer, H. E., 1976, Thermodynamic parameters for the intramolecular disorderedto-p transition of poly(L-tyrosine) in aqueous solution, Macromolecules 9: 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., 1987, Irreversible nature of the stack p-pleated sheets of a model polypeptide, Bull. Chem. Soc. Jpn. 60: 3438–3440.

    Article  CAS  Google Scholar 

  • Maeda, H., and Ooi, K., 1981, Isodichroic point and the 13—random coil transition of poly(S-carboxymethyl-L-cysteine) and poly(S-carboxyethyl-L-cysteine) in the absence of added salt, Biopolymers 20: 1549–1563.

    Article  CAS  Google Scholar 

  • Maeda, H., Kadono, K., and Ikeda, S., 1982a, ß structure of poly[S-(carboxymethyl)-L-cysteine] in aqueous solutions by intermolecular association and intramolecular chain folding, Macromolecules 15: 822–827.

    Article  CAS  Google Scholar 

  • Maeda, H., Nakajima, J., Oka, K., Ooi, K., and Ikeda, S., 1982b, Binding of divalent cations with poly(S-carboxymethyl-L-cysteine) and their effects on the polypeptide conformation, Int. J. Biol. Macromol. 4: 352–356.

    Article  CAS  Google Scholar 

  • Maeda, H., Ito, T., Suzuki, H., Hirata, S., Kako, I., Yoshino, M., Ikeda, S., and Kobayashi, Y., 1983a, Preparation of fractionated low-molecular-weight poly(S-carboxymethyl-c-cysteine) by ion-exchange chromatography, Biopolymers 22: 2173–2189.

    Article  CAS  Google Scholar 

  • Maeda, H., Saito, K., and Ikeda, S., 1983b, Concentration dependence of the conversion between the intermolecular 13-structure and the disordered state of poly(S-carboxymethyl-L-cysteine) in aqueous solutions, Bull. Chem. Soc. Jpn. 56: 602–606.

    Article  CAS  Google Scholar 

  • Maeda, H., Gatto, Y., and Ikeda, S., 1984a, Effects of chain length and concentration on the 13—coil conversion of poly[S-(carboxymethyl)-L-cysteine] in 50 mM NaCl solutions, Macromolecules 17: 2031–2038.

    Article  CAS  Google Scholar 

  • Maeda, H., Iwase, T., and Ikeda, S., 1984b, The effect of chain length on the formation of the intermolecular ß-structure of poly(S-carboxymethyl-L-cysteine), Polym. J. 16: 471–477.

    Article  CAS  Google Scholar 

  • Maeda, H., Kimura, M., and Ikeda, S., 1985a, Effects of cationic surfactants on the conformation of poly[S-(carboxymethyl)-L-cysteinel, Macromolecules 18: 2566–2571.

    Article  CAS  Google Scholar 

  • Maeda, H., Oka, K., and Ikeda, S., 1985b, Absorption and circular dichroism spectra of CuC12 complexes with poly(S-carboxymethyl-L-cysteine) and poly(S-carboxyethyl-L-cysteine), Biopolymers 24: 1115–1129.

    Article  CAS  Google Scholar 

  • Maeda, H., Tanaka, Y., and Ikeda, S., 1986, Interaction of poly[S-(2-carboxyethyl)-L-cysteine] with cationic surfactants, Bull. Chem. Soc. Jpn. 59: 769–773.

    Article  CAS  Google Scholar 

  • Maeda, H., Nezu, T., Fukada, K., and Ikeda, S., 1988, Effects of hydrocarbon chain length of cationic surfactants on the induction of the secondary structures of anionic polypeptides, Macromolecules 21: 1154–1158.

    Article  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel 13-sheets, Biopolymers 26: 1731–1752.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helices, twisted ß-sheets, and 13-turns, Biophys. Chem. 31: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, W. L., and Harrison, W. H., III, 1975, Estimation of the circular dichroism exhibited by statistical coils of poly(L-alanine) and unionized poly(L-lysine) in water, Biopolymers 14: 2025–2033.

    Article  CAS  Google Scholar 

  • Mattice, W. L., and Harrison, W. H., III, 1976, The importance of coulombic interactions for the induction of 3 structure in lysine oligomers by sodium dodecyl sulfate, Biopolymers 15: 559–567.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, W. L., and Scheraga, H. A., 1984a, Matrix formulation of the transition from a statistical coil to an intramolecular antiparallel 3 sheet, Biopolymers 23: 1701–1724.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, W. L., and Scheraga, H. A., 1984b, Practical estimates of the upper limit for the distribution function for strand lengths in large homopolymers containing intramolecular antiparallel sheets with tight bends, Macromolecules 17: 2690–2696.

    Article  CAS  Google Scholar 

  • Mattice, W. L., and Scheraga, H. A., 1984c, Suppression of the statistical coil state during the a R transition in homopolypeptides, Biopolymers 23: 2879–2890.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, W. L., and Scheraga, H. A., 1985, Role of interstrand loops in the formation of intramolecular cross-13-sheets by homopolyamino acids, Biopolymers 24: 565–579.

    Article  PubMed  CAS  Google Scholar 

  • Mattice, W. L., and Suter, U. W., 1994, Conformational Theory of Large Molecules. The Rotational Isomeric State Model in Macromolecular Systems, Wiley, New York.

    Google Scholar 

  • Nagasawa, M., and Holtzer, A., 1964, The helix—coil transition in solutions of polyglutamic acid, J. Am. Chem. Soc. 86: 538–543.

    Article  CAS  Google Scholar 

  • Nakaishi, A., Maeda, H., Tomiyama, T., Ikeda, S., Kobayashi, Y., and Kyogoku, Y., 1988, Chain length dependence of solubility of monodisperse polypeptides in aqueous solutions and the stability of the (3-structure, J. Phys. Chem. 92: 6161–6166.

    Article  CAS  Google Scholar 

  • Oka, K., Maeda, H., and Ikeda, S., 1983, Induction of the 13-form of poly(S-carboxyethyl-L-cysteine) by divalent metal chlorides, Int. J. Biol. Macromol. 5: 342–346.

    Article  CAS  Google Scholar 

  • Palumbo, M., Cosani, A., Terbojevich, M., and Peggion, E., 1977, Metal complexes of poly(a-amino acids). A potentiometric and circular dichroism investigation of Cu(II) complexes of poly(L-lysine), poly(L-ornithine), and poly(L-diaminobutyric acid), Macromolecules 10: 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo, M., Cosani, A., Terbojevich, M., and Peggion, E., 1978, Metal complexes of poly-a-amino acids. Interaction of Cu(II) ions with poly(L-lysine) in the 0-structure, Biopolymers 17: 243–246.

    Article  CAS  Google Scholar 

  • Park, I. H., Wang, Q.-W., and Chu, B., 1987, Transition of linear polymer dimensions from to collapsed regime. 1. Polystyrene/cyclohexane system, Macromolecules 20: 1965–1975.

    Article  CAS  Google Scholar 

  • Park, I. H., Wang, Q.-W., and Chu, B., 1987, Transition of linear polymer dimensions from 0 to collapsed regime. 1. Polystyrene/cyclohexane system, Macromolecules 20: 1965–1975.

    Article  CAS  Google Scholar 

  • Patton, E., and Auer, H. E., 1975, Conformational states of poly(L-tyrosine) in aqueous solution, Biopolymers 14: 849–869.

    Article  PubMed  CAS  Google Scholar 

  • Peggion, E., Cosani, A., and Terbojevich, M., 1974a, Solution properties of synthetic polypeptides. Assignment of the conformation of poly(L-tyrosine) in water and in ethanol—water solutions, Macromolecules 7: 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Peggion, E., Cosani, A., Terbojevich, M., and Romanin-Jacur, L., 1974b, Random coil-0-form transition of poly-L-lysine. Evidence for the formation of the a-helical structure during the transition, J. Chem. Soc. Chem. Commun. 1974: 313–316.

    Google Scholar 

  • Pritchard, M. J., and Caroline, D., 1980, Hydrodynamic radius of polystyrene around the 0 temperature, Macromolecules 13: 957–959.

    Article  CAS  Google Scholar 

  • Pritchard, M. J., and Caroline, D., 1981, Hydrodynamic radius of polystyrene around the 0 temperature. 2, Macromolecules 14: 424–426.

    Article  CAS  Google Scholar 

  • Pysh, E. S., 1966, The calculated ultraviolet optical properties of polypeptide 0-configurations, Proc. Natl. Acad. Sci. USA 56: 825–832.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., Maeda, H., and Ikeda, S., 1982, Reversible and irreversible conversion between the intermolecular 0-structure and the disordered state of poly(S-carboxymethyl-L-cysteine) in aqueous media, Biophys. Chem. 16: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, P., and Doty, P., 1966, Optical rotatory properties of the 0-configuration in polypeptides and proteins, Proc. Natl. Acad. Sci. USA 55: 981–989.

    Article  PubMed  CAS  Google Scholar 

  • Satake, I., and Yang, J. T., 1973, Effect of chain length and concentration of anionic surfactants on the conformational transitions of poly(L-ornithine) and poly(L-lysine) in aqueous solution, Biochem. Biophys. Res. Commun. 54: 930–936.

    Article  PubMed  CAS  Google Scholar 

  • Satake, I., and Yang, J. T., 1975, Effect of temperature and pH on the 0—helix transition of poly(Llysine) in sodium dodecyl sulfate solution, Biopolymers 14: 1841–1846.

    Article  CAS  Google Scholar 

  • Satake, I., and Yang, J. T., 1976, Interaction of sodium dodecyl sulfate with poly(L-ornithine) and poly(Llysine) in aqueous solution, Biopolymers 15: 2263–2275.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., and Woody, R. W., 1980, Circular dichroism of N-phenylnaphthylamine derivatives complexed with the 0-form of poly(L-lysine), Biopolymers 19: 2021–2031.

    Article  CAS  Google Scholar 

  • Senior, M. B., Gorrell, S. L., and Hamori, E., 1971, Light-scattering and potentiometric-titration studies of poly-L-tyrosine in aqueous solutions, Biopolymers 10: 2387–2404.

    Article  PubMed  CAS  Google Scholar 

  • Snell, C. R., and Fasman, G. D., 1973, Kinetics and thermodynamics of the a helix 0 transconformation of poly(L-lysine) and L-leucine copolymers. A compensation phenomenon, Biochemistry 12: 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  • Snipp, R. L., Miller, W. G., and Nylund, R. E., 1965, The charge-induced helix—random coil transition in aqueous solution, J. Am. Chem. Soc. 87: 3547–3553.

    Article  CAS  Google Scholar 

  • Sun, S.-T., Nishio, I., Swislow, G., and Tanaka, T., 1980, The coil—globule transition: Radius of gyration of polystyrene in cyclohexane, J. Chem. Phys. 73: 5971–5975.

    Article  CAS  Google Scholar 

  • Tilstra, L. F., and Mattice, W. L., 1988, Collapse of a polypeptide chain as a result of the intramolecular formation of antiparallel 0 sheets, Biopolymers 27: 805–819.

    Article  PubMed  CAS  Google Scholar 

  • Tilstra, L. F., Mattice, W. L., and Maeda, H., 1988, Interaction of (+)-catechin with the edge of the 0 sheet formed by poly(S-carboxymethyl-L-cysteine), J. Chem. Soc. Perkin Trans. II 1988: 1613–1616.

    Article  Google Scholar 

  • Timasheff, S. N., Susi, H., Townend, R., Stevens, L., Gorbunoff, M. J., and Kumosinski, T. F., 1967, Application of circular dichroism and infrared spectroscopy to the conformation of proteins in solution, in: Conformation of Biopolymers, Vol. 1 ( G. N. Ramachandran, ed.), pp. 173–196, Academic Press, New York.

    Google Scholar 

  • Tomiyama, T., and Ikeda, S., 1979, Effect of D20 on the thermal stability of the 0 conformation of poly[S-((3-hydroxypropyl)-carbamoylmethyl)-L-cysteine], Macromolecules 12: 165–167.

    Article  CAS  Google Scholar 

  • Toniolo, C., and Bonora, G. M., 1975, The relative stabilities of the ß-structures of monodisperse synthetic linear homo-oligopeptides with aliphatic side chains, Pept.: Chem., Struct. Biol., Proc. Am. Pept. Symp., 4th, pp. 145–150.

    Google Scholar 

  • Townend, R., Kumosinski, T. F., Timasheff, S. N., Fasman, G. D., and Davidson, B., 1966, The circular dichroism of the 13 structure of poly-L-lysine, Biochem. Biophys. Res. Commun. 23: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Vidakovie, P., and Rondelez, F., 1983, Temperature dependence of the hydrodynamic radius of flexible coils in solutions. 1. Vicinity of the A point, Macromolecules 16: 253–261.

    Article  Google Scholar 

  • Vidakovie, P., and Rondelez, F., 1984, Temperature dependence of the hydrodynamic radius of flexible coils in solutions. 2. Transition from the A to the collapsed state, Macromolecules 17: 418–425.

    Article  Google Scholar 

  • von Dreele, P. H., Lotan, N., Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971, Helix—coil stability constants for the naturally occurring amino acids in water. II. Characterization of the host polymers and application of the host—guest technique to random poly(hydroxypropylglutamine-co-hydroxybutylglutamine), Macromolecules 4: 408–417.

    Article  Google Scholar 

  • Woody, R. W., 1969, Optical properties of polypeptides in the ß-conformation, Biopolymers 8: 669–683.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1993, The circular dichroism of oriented 13 sheets: Theoretical predictions, Tetrahedron Asymmetry 4: 529–544.

    Article  CAS  Google Scholar 

  • Wooley, S.-Y. C., and Holzwarth, G., 1970, Intramolecular 13-pleated-sheet formation by poly(L-lysine) in solution, Biochemistry 9: 3604–3608.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H., and Yang, J. T., 1974, The thermally induced helix—p transition of poly(N`-methyl-Llysine) and poly(M-ethyl-L-ornithine) in aqueous solution, Biopolymers 13: 1109–1116.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. T., 1967, Optical activity of the a, (3, and coiled conformations in polypeptides and proteins, in: Conformation of Biopolymers, Vol. 1 ( G. N. Ramachandran, ed.), pp. 157–172, Academic Press, New York.

    Google Scholar 

  • Yu, J., Wang, Z., and Chu, B., 1992, Kinetic study of the coil-to-globule transition, Macromolecules 25: 1618–1620.

    Article  CAS  Google Scholar 

  • Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31: 526–535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tilstra, L., Mattice, W.L. (1996). The β Sheet ⇌ Coil Transition of Polypeptides, as Determined by Circular Dichroism. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics