Skip to main content

Abstract

This paper is not to be read by the faint of heart. No proofs are given, but it contains statements of a truly alarming number of constructions for transversal designs and incomplete transversal designs.

The paper is a record of an attempt to construct tables of the best results implied by known constructions for the existence of certain classes of mutually orthogonal latin squares and incomplete latin squares.

Sections §1–6 establish the mathematical background for the paper. We begin with basic definitions in §1. Then the following five sections state a fairly complete collection of construction techniques. It may well be impossible to write a complete list of variants of known constructions, and it is certainly beyond reason to do so. We content ourselves with a large battery of the constructions that have been exploited in the literature.

In §7–9, we describe a package developed in Maple which instantiates most (but not all) of the constructions in code. Issues in the design of this package are addressed, and a discussion of the architecture of the package is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.J.R. Abel, Four mutually orthogonal latin squares of orders 28 and 52, J. Combinatorial Theory A58 (1991), 306–309.

    Article  MathSciNet  MATH  Google Scholar 

  2. R.J.R. Abel, private communications, 1993–94.

    Google Scholar 

  3. R.J.R. Abel and Y.W. Cheng, Some new MOLS of order 2’p for p a prime power, Austral. J. Combin. 10 (1994), 175–186.

    MathSciNet  MATH  Google Scholar 

  4. R.J.R. Abel, C.J. Colbourn, J.X. Yin and H. Zhang, Existence of transversal designs with block size five and any index a, preprint.

    Google Scholar 

  5. R.J.R. Abel and D.T. Todorov, Four MOLS of order 20, 30, 38 and 44, J. Combinatorial Theory A64 (1993), 144–148..

    Google Scholar 

  6. R.J.R. Abel, X. Zhang and H. Zhang, Three mutually orthogonal idempotent latin squares of orders 22 and 26, J. Stat. Plan. Infer.,to appear.

    Google Scholar 

  7. R.D. Baker, Whist tournaments, Congressus Num. 14 (1975), 89–100.

    Google Scholar 

  8. R.D. Baker, An elliptic semiplane, J. Combinatorial Theory A25 (1978), 193–195.

    Article  MATH  Google Scholar 

  9. F.E. Bennett, Pairwise balanced designs with prime power block sizes exceeding 7, Ann. Discrete Math. 34 (1987), 43–64.

    Google Scholar 

  10. F.E. Bennett, C.J. Colbourn and L. Zhu, Existence of certain types of three HMOLS, Discrete Math,to appear.

    Google Scholar 

  11. F.E. Bennett, K.T. Phelps, C.A. Rodger and L. Zhu, Constructions of perfect Mendelsohn designs, Discrete Math. 103 (1992), 139–151.

    Article  MathSciNet  MATH  Google Scholar 

  12. F.E. Bennett and L. Zhu, Existence of HSOLSSOM(hT) where h is even, preprint.

    Google Scholar 

  13. T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  14. R.C. Bose, On the applications of properties of Galois fields to the problem of construction of hypergraecolatin squares, Sankhya 3 (1938), 328–338.

    Google Scholar 

  15. R.C. Bose, I.M. Chakravarti and D.E. Knuth, On methods of constructing sets of mutually orthogonal latin squares using a computer, Technometrics 2 (1960), 507–516.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.C. Bose, I.M. Chakravarti and D.E. Knuth, On methods of constructing sets of mutually orthogonal latin squares using a computer II, Technometrics 3 (1961), 111–118.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.C. Bose and S.S. Shrikhande, On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler, Trans. Amer. Math. Soc. 95 (1960), 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.C. Bose, S.S. Shrikhande and E.T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture, Canad. J. Math. 12 (1960), 189–203.

    MathSciNet  MATH  Google Scholar 

  19. R.K. Brayton, D. Coppersmith and A.J. Hoffman, Self-orthogonal latin squares of all orders n # 2, 3, 6, Bull. Amer. Math. Soc. 80 (1974), 116118.

    Google Scholar 

  20. A.E. Brouwer, The number of mutually orthogonal latin squares — a table to order 10000, Research Report ZW 123/79, Math. Centrum, Amsterdam, 1979.

    Google Scholar 

  21. A.E. Brouwer, On the existence of 30 mutually orthogonal latin squares, Math. Centrum Report ZW77, Amsterdam, 1980.

    Google Scholar 

  22. A.E. Brouwer, A series of separable designs with application to pairwise orthogonal latin squares, Europ. J. Combin. 1 (1980), 39–41.

    MathSciNet  MATH  Google Scholar 

  23. A.E. Brouwer, Four MOLS of order 10 with a hole of order 2, J. Stat. Plan. Infer. 10 (1984), 203–205.

    Article  MathSciNet  Google Scholar 

  24. A.E. Brouwer, Recursive constructions of mutually orthogonal latin squares, Ann. Discrete Math. 46 (1991), 149–168.

    MathSciNet  Google Scholar 

  25. A.E. Brouwer and G.H.J. van Rees, More mutually orthogonal latin squares, Discrete Math. 39 (1982), 263–281.

    Article  MathSciNet  MATH  Google Scholar 

  26. C.J. Colbourn, Four MOLS of order 26, J. Comb. Math. Comb. Comput. 17 (1995), 147–148.

    MathSciNet  MATH  Google Scholar 

  27. C.J. Colbourn, Some direct constructions for incomplete transversal designs, J. Stat. Plan. Infer., to appear.

    Google Scholar 

  28. C.J. Colbourn, Construction techniques for mutually orthogonal latin squares, in: Combinatorics Advances Kluwer, to appear.

    Google Scholar 

  29. C.J. Colbourn, J.H. Dinitz and D.R. Stinson, More thwarts in transversal designs, Finite Fields Applic to appear.

    Google Scholar 

  30. C.J. Colbourn, J.H. Dinitz and M. Wojtas, Thwarts in transversal designs, Des. Codes Crypt. 5 (1995), 189–197.

    Article  MathSciNet  MATH  Google Scholar 

  31. C.J. Colbourn, J. Yin and L. Zhu, Six MOLS of order 76, J. Comb. Math. Comb. Comput., to appear.

    Google Scholar 

  32. D.J. Crampin and A.J.W. Hilton, On the spectra of certain types of latin squares, J. Combinatorial Theory A19 (1975), 84–94.

    Article  MathSciNet  MATH  Google Scholar 

  33. R.H.F. Denniston, Subplanes of the Hughes plane of order 9, Proc. Cambridge Phil. Soc. 64 (1968), 589–598.

    MathSciNet  MATH  Google Scholar 

  34. R.H.F. Denniston, Some maximal arcs in finite projective planes, J. Combinatorial Theory A6 (1969), 317–319.

    Article  MathSciNet  MATH  Google Scholar 

  35. M.J. de Resmini, On the Dempwolff plane, in: Finite Geometries and Combinatorial Designs, Amer. Math. Soc., 1987, pp. 47–64.

    Google Scholar 

  36. J.H. Dinitz and D.R. Stinson, MOLS with holes, Discrete Math. 44 (1983), 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  37. D.A. Drake and H. Lenz, Orthogonal latin squares with orthogonal sub-squares, Archiv der Math. 34 (1980), 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Du, On incomplete transversal designs with block size five, Util. Math. 40 (1991), 272–282.

    MATH  Google Scholar 

  39. B. Du, On the existence of incomplete transversal designs with block size 5, Discrete Math. 135 (1994), 81–92.

    MATH  Google Scholar 

  40. L. Euler, Recherches sur une nouvelle espèce de quarrés magiques,Verh. Zeeuw. Gen. Weten. Vlissengen 9 (1782), 85–239

    Google Scholar 

  41. B. Ganter, R. Mathon and A. Rosa, A complete census of (10,3,2) designs and of Mendelsohn triple systems of order ten. II. Mendelsohn triple systems with repeated blocks, Congressus Num. 22 (1978), 181–204.

    Google Scholar 

  42. M. Greig, Designs from configurations in projective planes, unpublished, 1992.

    Google Scholar 

  43. R. Guérin, Aspects algebraiques de problème de Yamamoto, C.R. Acad. Sci. 256 (1963), 583–586.

    MATH  Google Scholar 

  44. R. Guérin, Sur une généralisation de la méthode de Yamamoto pour la construction de carrés latins orthogonaux, C.R. Acad. Sci. 256 (1963), 2097–2100.

    MATH  Google Scholar 

  45. R. Guérin, Existence et propriétés des carrés latin orthogonaux II, Publ. Inst. Stat. Univ. Paris 15 (1966), 215–293.

    Google Scholar 

  46. H. Hanani, On the number of orthogonal latin squares, J. Combinatorial Theory 8 (1970), 247–271.

    Article  MathSciNet  MATH  Google Scholar 

  47. A.S. Hedayat and E. Seiden, On the theory and application of sum composition of latin squares and orthogonal latin squares, Pacific J. Math. 54 (1974), 85–113.

    MathSciNet  MATH  Google Scholar 

  48. K.E. Heinrich, Near—orthogonal latin squares, Util Math. 12 (1977), 145155.

    Google Scholar 

  49. K.E. Heinrich and L. Zhu, Existence of orthogonal latin squares with aligned subsquares, Discrete Math. 59 (1984), 241–248.

    MathSciNet  Google Scholar 

  50. K.E. Heinrich and L. Zhu, Incomplete self—orthogonal latin squares, J. Austral. Math. Soc. A42 (1987), 365–384.

    MathSciNet  MATH  Google Scholar 

  51. J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, 1979.

    Google Scholar 

  52. J.D. Horton, Sub—latin squares and incomplete orthogonal arrays, J. Combinatorial Theory A16 (1974), 23–33.

    Article  MathSciNet  MATH  Google Scholar 

  53. D.M. Johnson, A.L. Dulmage and N.S. Mendelsohn, Orthomorphisms of groups of orthogonal latin squares, Canad. J. Math. 13 (1961), 356–372.

    MathSciNet  MATH  Google Scholar 

  54. T.P. Kirkman, On the perfect r—partitions of r2 — r + 1, Transactions of the Historic Society of Lancashire and Cheshire (1850), 127–142.

    Google Scholar 

  55. E.R. Lamken, The existence of orthogonal partitioned incomplete latin squares of type t’’i, Discrete Math. 89 (1991), 231–251.

    Article  MathSciNet  MATH  Google Scholar 

  56. J.H. van Lint, Combinatorial Theory Seminar, Lect. Notes Math. 832, Springer, 1974.

    Google Scholar 

  57. H.F. MacNeish, Euler squares, Ann. Math. (NY) 23 (1922), 221–227.

    MathSciNet  Google Scholar 

  58. H.B. Mann, The construction of orthogonal latin squares,Ann. Math. Statist. 13 (1942), 418–423

    Google Scholar 

  59. R.A. Mathon, unpublished.

    Google Scholar 

  60. W.H. Mills, Some mutually orthogonal latin squares, Congressus Num. 19 (1977), 473–487.

    Google Scholar 

  61. R.C. Mullin, Finite bases for some PBD-closed sets, Discrete Math. 77 (1989), 217–236.

    Article  MathSciNet  MATH  Google Scholar 

  62. R.C. Mullin, P.J. Schellenberg, D.R. Stinson and S.A. Vanstone, Some results on the existence of squares, Ann. Discrete Math. 6 (1980), 257274.

    Google Scholar 

  63. R.C. Mullin and D.R. Stinson, Holey SOLSSOMs, Util. Math. 25 (1984), 159–169.

    MathSciNet  MATH  Google Scholar 

  64. R.C. Mullin and L. Zhu, The spectrum of HSOLSSOM(hn) where h is odd, Util. Math. 27 (1985), 157–168.

    MathSciNet  MATH  Google Scholar 

  65. A.V. Nazarok, Five pairwise orthogonal latin squares of order 21, Issled. Oper. i ASU, 1991, pp. 54–56.

    Google Scholar 

  66. T.G. Ostrom and F.A. Sherk, Finite projective planes with affine subplanes, Can. Math. Bull. 7 (1964), 549–560.

    Article  MathSciNet  MATH  Google Scholar 

  67. E.T. Parker, Construction of some sets of mutually orthogonal latin squares, Proc. Amer. Math. Soc. 10 (1959), 946–949.

    Article  MathSciNet  MATH  Google Scholar 

  68. E.T. Parker, Nonextendability conditions on mutually orthogonal latin squares, Proc. Amer. Math. Soc. 13 (1962), 219–221.

    Article  MathSciNet  MATH  Google Scholar 

  69. C. Pellegrino and P. Lancelotti, A construction of pairs and triples of k—incomplete orthogonal arrays, Ann. Discrete Math. 37 (1988), 251–256.

    Article  Google Scholar 

  70. L. Puccio and M.J. de Resmini, Subplanes of the Hughes plane of order 25, Arch. Math. 49 (1987), 151–165.

    Article  MATH  Google Scholar 

  71. J.F. Rigby, Affine subplanes of finite projective planes, Can. J. Math. 17 (1965), 977–1009.

    MathSciNet  MATH  Google Scholar 

  72. C.E. Roberts Jr., Sets of mutually orthogonal latin squares with `like sub-squares’, J. Combinatorial Theory A61 (1992) 50–63.

    Article  MATH  Google Scholar 

  73. C.E. Roberts Jr., Sets of mutually orthogonal latin squares with `like sub-squares’ II, preprint.

    Google Scholar 

  74. R. Roth and M. Peters, Four pairwise orthogonal latin squares of order 24, J. Combinatorial Theory A44 (1987), 152–155.

    Article  MathSciNet  MATH  Google Scholar 

  75. F. Ruiz and E. Seiden, Some results on the construction of orthogonal latin squares by the method of sum composition, J. Combinatorial Theory A16 (1974), 230–240.

    Article  MathSciNet  MATH  Google Scholar 

  76. P.J. Schellenberg, G.H.J. van Rees and S.A. Vanstone, Four pairwise orthogonal latin squares of order 15, Ars Combinatoria 6 (1978), 141–150.

    MathSciNet  MATH  Google Scholar 

  77. E. Seiden, A method of construction of resolvable BIBD, Sankhya A25 (1963), 393–394.

    MathSciNet  MATH  Google Scholar 

  78. E. Seiden and C.J. Wu, Construction of three mutually orthogonal latin squares by the method of sum composition, in: Essays in Probability and Statistics, Shinko Publishing, Tokyo, 1976.

    Google Scholar 

  79. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377–385.

    Article  Google Scholar 

  80. D.A. Sprott, A series of symmetrical group divisible incomplete block designs, Ann. Math. Statist. 30 (1959), 249–251.

    Article  MathSciNet  MATH  Google Scholar 

  81. D.R. Stinson, On the existence of 7 and 8 mutually orthogonal latin squares, Ars Combinatoria 6 (1978), 113–115.

    MathSciNet  Google Scholar 

  82. D.R. Stinson, On the existence of 30 mutually orthogonal latin squares, Ars Combinatoria 7 (1979), 153–170.

    MathSciNet  MATH  Google Scholar 

  83. D.R. Stinson, A generalization of Wilson’s construction for mutually orthogonal latin squares, Ars Combinatoria 8 (1979), 95–105.

    MathSciNet  MATH  Google Scholar 

  84. D.R. Stinson, The equivalence of certain incomplete transversal designs and frames, Ars Combinatoria 22 (1986), 81–87.

    MathSciNet  MATH  Google Scholar 

  85. D.R. Stinson and L. Zhu, On sets of three MOLS with holes, Discrete Math. 54 (1985), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  86. D.R. Stinson and L. Zhu, On the existence of MOLS with equal—sized holes, Aequat. Math. 33 (1987), 96–105.

    MathSciNet  MATH  Google Scholar 

  87. D.R. Stinson and L. Zhu, On the existence of three MOLS with equal—sized holes, Austral. J. Combin. 4 (1991), 33–47.

    MathSciNet  MATH  Google Scholar 

  88. K. Szajowski, The number of orthogonal latin squares, Applicationes Math. 15 (1976), 85–102.

    MathSciNet  MATH  Google Scholar 

  89. G. Tarry, Le problème de 36 officiers, Ass. Franc. Av. Sci. 29 (1900), 170203.

    Google Scholar 

  90. D.T. Todorov, Three mutually orthogonal latin squares of order 14, Ars Combinatoria 20 (1985), 45–48.

    MathSciNet  MATH  Google Scholar 

  91. D.T. Todorov, Four mutually orthogonal latin squares of order 20, Ars Combinatoria 27 (1989), 63–65.

    MathSciNet  MATH  Google Scholar 

  92. W.D. Wallis, Three orthogonal latin squares, Congressus Num. 42 (1984), 69–86.

    MathSciNet  Google Scholar 

  93. W.D. Wallis and L. Zhu, Orthogonal latin squares with small subsquares, Lect. Notes Math. 1036 (1983), 398–409.

    MathSciNet  Google Scholar 

  94. S.P. Wang, On self-orthogonal latin squares and partial transversals of latin squares, Ph.D. thesis, Ohio State University, 1978.

    Google Scholar 

  95. R.M. Wilson, A few more squares, Congressus Num. 10 (1974), 675–680.

    Google Scholar 

  96. R.M. Wilson, Concerning the number of mutually orthogonal latin squares, Discrete Math. 9 (1974), 181–198.

    Article  MathSciNet  MATH  Google Scholar 

  97. R.M. Wilson, Constructions and uses of pairwise balanced designs, in: Combinatorics, Math. Centrum Amsterdam Tracts 55 (1974), 18–41.

    Google Scholar 

  98. M. Wojtas, On seven mutually orthogonal latin squares, Discrete Math. 20 (1977), 193–201.

    Article  MathSciNet  Google Scholar 

  99. M. Wojtas, The construction of mutually orthogonal latin squares, Kommunikat 172, Inst. Math. Politechniki Wroclaw, 1978.

    Google Scholar 

  100. M. Wojtas, A note on mutually orthogonal latin squares, Kommunikat 236, Inst. Math. Politechniki Wroclaw, 1978.

    Google Scholar 

  101. M. Wojtas, New Wilson-type constructions of mutually orthogonal latin squares II, Inst. Math. Politechniki Wroclaw, 1979.

    Google Scholar 

  102. M. Wojtas, New Wilson-type constructions of mutually orthogonal latin squares, Discrete Math. 32 (1980), 191–199.

    MathSciNet  MATH  Google Scholar 

  103. M. Wojtas, Some new matrices-minus-diagonal and MOLS,Discrete Math. 76 (1989), 291–292

    Google Scholar 

  104. M. Wojtas, Five mutually orthogonal latin squares of orders 24 and 40, preprint.

    Google Scholar 

  105. K. Yamamoto, Generation principles of latin squares, Bull. Inst. Internat. Stat. 38 (1961), 73–76.

    MATH  Google Scholar 

  106. X. Zhang and H. Zhang, Three mutually orthogonal idempotent latin squares of order 18, preprint.

    Google Scholar 

  107. L. Zhu, A short disproof of Euler’s conjecture concerning orthogonal latin squares, Ars Combinatoria 14 (1982), 47–55.

    MathSciNet  MATH  Google Scholar 

  108. L. Zhu, Pairwise orthogonal latin squares with orthogonal small sub-squares, Research Report CORR 83–19, University of Waterloo, 1983.

    Google Scholar 

  109. L. Zhu, Some results on orthogonal latin squares with orthogonal sub-squares, Util. Math. 25 (1984), 241–248.

    MATH  Google Scholar 

  110. L. Zhu, Orthogonal latin squares with subsquares, Discrete Math. 48 (1984), 315–321.

    Article  MathSciNet  MATH  Google Scholar 

  111. L. Zhu, Six pairwise orthogonal latin squares of order 69, J. Austral. Math. Soc. A37 (1984), 1–3.

    Article  MATH  Google Scholar 

  112. L. Zhu, Incomplete transversal designs with block size five, Congressus Num. 69 (1989), 13–20.

    Google Scholar 

  113. R.J.R. Abel, Difference families.

    Google Scholar 

  114. R.J.R. Abel, A.E. Brouwer, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares.

    Google Scholar 

  115. R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Incomplete MOLS.

    Google Scholar 

  116. R.J.R. Abel and S.C. Furino, Resolvable and near—resolvable designs.

    Google Scholar 

  117. R.A. Mathon and A. Rosa, Balanced incomplete block designs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colbourn, C.J., Dinitz, J.H. (1996). Making the Mols Table. In: Wallis, W.D. (eds) Computational and Constructive Design Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2497-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2497-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2499-8

  • Online ISBN: 978-1-4757-2497-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics