Skip to main content

Skeletal Muscle

  • Chapter
Biomechanics

Abstract

There are three kinds of muscles: skeletal, heart, and smooth. Skeletal muscle makes up a major part of the animal body. It is the prime mover of animal locomotion. It is controlled by voluntary nerves. It has the feature that if it is stimulated at a sufficiently high frequency, it can generate a maximal tension, which remains constant in time. It is then said to be tetanized. The activity of the contracting mechanism is then thought to be maximal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. M. (1968) Animal Mechanics. University of Washington Press, Seattle.

    Google Scholar 

  • Bergel, D. H. and Hunter, P. J. (1979) The mechanics of the heart, In Quantitative Cardiovascular Studies, N. H. C. Hwang, D. R. Gross, and D. J. Patel (eds.) University Park Press, Baltimore, Chapter 4, pp. 151–213.

    Google Scholar 

  • Caplan, S. R. (1966) A characteristic of self-regulated linear energy converters. The Hill force-velocity relation for muscle. J. Theor. Biol. 11, 63–86.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, F. D. and Siger, A. (1960) The mechanochemistry of muscular contraction. I. The isometric twitch. J. Gen. Physiol. 43, 33–60.

    Article  Google Scholar 

  • Eisenberg, E. and Hill, T. L. (1978) A cross-bridge model of muscle contraction. Progr. Biophys. Mol. Biol. 33, 55–82.

    Article  CAS  Google Scholar 

  • Eisenberg, E., Chen, Y., and Hill, T. L. (1980) A cross-bridge model of muscle contraction, quantitative analysis. Biophys. J. 29, 195–227.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E. and Hill, T. L. (1985) Muscle contraction and free energy transduction in biological systems. Science 227, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Fenn, W. P. and Marsh, B. S. (1935) Muscular force at different speeds of shortening. J. Physiol. 85, 277.

    PubMed  CAS  Google Scholar 

  • Ferenezi, M. A., Goldman, Y. E., and Simmons, R. M. (1984) The dependence of force and shortening velocity on substrate concentration in skinned muscle fibers from Rana Temporaria. J. Physiol. (London) 350, 519–543.

    Google Scholar 

  • Ford, L. E., Huxley, A. F., and Simmons, R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. 269, 441–515.

    PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1970) Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3, 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. (London) 185, 170–192.

    Google Scholar 

  • Heuser, J. E. and Cooke, R. (1983) Actin-myosin interactions visualized by quick-freeze, deep-etch replica technique. J. Mol. Biol. 169, 97–122.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, H. and Goldman, Y. E. (1991) Sliding distance between actin and myosin filaments per ATP molecule hydrolyzed in skinned muscle fibers. Nature 352, 352–354.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London B 126, 136–195.

    Article  Google Scholar 

  • Hill, A. V. (1970) First and Last Experiments in Muscle Mechanics. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Hill, T., Eisenberg, E., Chen, Y.-D., and Podolsky, R. J. (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys. J. 15, 335–372.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Niedergerke, R. (1954) Structural changes in muscle during contraction. Nature 173, 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. (1957) Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem. 7, 255–318.

    CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature (London) 233, 533–538.

    Article  CAS  Google Scholar 

  • Huxley, A. F. (1974) Muscular contraction. A review lecture. J. Physiol. 243, 1–43.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Hanson, J. (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1957) The double array of filaments in cross—striated muscle. J. Biophys. Biochem. Cytol. 3, 631–643.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1958) The contraction of muscle. Sci. Am. 199, 67.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscular contraction. Science 164, 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1990) Sliding filaments and molecular motile systems. J. Biol. Chem. 265, 8347–8350.

    PubMed  CAS  Google Scholar 

  • Ishijima, A., Doi, T., Sakurada, K., and Yanagida, T. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Iwazumi, T. (1970) A new field theory of muscle contraction. Ph.D. Thesis. University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Julian, F. J. and Sollins, M. R. (1975) Sarcomere length-tension relations in living rat papillary muscle. Circulation Res. 37, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, A. and Yanagida, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Kreuger, J. E. and Pollack, G. H. (1975) Myocardial sarcomere dynamics during isometric contraction. J. Physiol. 251, 627–643.

    Google Scholar 

  • Mommaerts, W. F. H. M. (1954) Is adenosine triphosphate broken down during a single muscle twitch? Nature 174, 1083–1084.

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts, W. F. H. M., Olmsted, M., Seraydarian, K., and Wallner, A. (1962) Contraction with and without demonstratable splitting of energy-rich phosphate in turtle muscle. Biochim. Biophys. Acta 63, 82–92, 75–81.

    Google Scholar 

  • Moore, P. B., Huxley, H. E., and DeRosier, D. J. (1970) Three-dimensional reconstruction of F-actin, thin filaments, and decorated thin filaments. J. Mol. Biol. 50, 279–295.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M. I. M. and Pollack, G. H. (1977) Molecular mechanism of contraction. Controversies in research. Circulation Res. 40, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Parmley, W. W. and Sonnenblick, E. H. (1967) Series elasticity in heart muscle. Circulation Res. 20, 112–123.

    Article  PubMed  CAS  Google Scholar 

  • Podolsky, R. J. and Nolan A. C. (1971) In Contractility of Muscle Cells and Related Processes. R. J. Podolsky (ed.) Prentice-Hall, Englewood Cliffs, NJ, pp. 247–260.

    Google Scholar 

  • Podolsky, R. J., Nolan, A. C., and Zavelier, S. A. (1969) Cross-bridge properties derived from muscle isotonic velocity transient. Proc. Natl. Acad. Sci. U.S.A. 64, 504–511.

    Article  PubMed  CAS  Google Scholar 

  • Polissar, M. J. (1952) Physical chemistry of contractile process in muscle. 1. A physicochemical model of contractile mechanism. Am. J. Physiol. 168, 766–781.

    PubMed  CAS  Google Scholar 

  • Reedy, M. K. (1968) Ultrastructure of insect flight muscle: I. Screw sense and structural grouping in the rigor cross-bridge lattice. J. Mol. Biol. 31, 155–176.

    Article  PubMed  CAS  Google Scholar 

  • Simons, R. M. and Jewell, B. R. (1974) Mechanics and models of muscular contraction. In Recent Advances in Physiology, R. J. Linden (ed.) Churchill, London, Vol. 9, pp. 87–147.

    Google Scholar 

  • Sugi, H. and Tsuchiya, T. (1981) Enhancement of mechanical performance in frog muscle fibers after quick increases in load. J. Physiol. (London) 319, 239–252.

    CAS  Google Scholar 

  • Taro, Q., Uyeda, P., Warrick, H. M., Kron, S. J., and Spudich, J. A. (1991) Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311.

    Article  Google Scholar 

  • Tözeren, A. (1983) Static analysis of the left ventricle. J. Biomech. Eng. 105, 39–46.

    Article  PubMed  Google Scholar 

  • Tözeren, A. (1985) Constitutive equations of skeletal muscle based on cross-bridge mechanism. Biophys. J. 47, 225–236.

    Article  PubMed  Google Scholar 

  • Tözeren, A. (1985) Continuum rheology of muscle contraction and its application to cardiac contractility. Biophys. J. 47, 303–309.

    Article  PubMed  Google Scholar 

  • Tözeren, A. (1986) Assessment of fiber strength in a urinary bladder by using experimental pressure volume curves: An analytical method. J. Biomech. Eng. 108, 301–305.

    Article  PubMed  Google Scholar 

  • Uyeda, T. Q. P., Warrick, H. W., Kron, S. J., and Spudich, J. A. (1991) Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Warwick, R. and Williams, P. L. (eds.) (1973) Gray’s Anatomy, 35th British Edition. W. B. Saunders, Philadelphia.

    Google Scholar 

  • White, D. C. S. and Thorson, J. (1973) The kinetics of muscle contraction. Progr. Biophys. Mol. Biol. 27, 173–255.

    Article  Google Scholar 

  • Zahalak, G. I., Duffy, J., Stewart, P. A., Litchman, H. M., Hawley, R. H., and Pasley, P. R. (1976) Partially activated human skeletal muscle: An experimental investigation of force, velocity, and EMG. J. Appl. Mech. 98, 81–86.

    Article  Google Scholar 

  • Zahalak, G. I. (1981) A distribution-moment approximation for kinetic theories of muscle contraction. Math. Biosci. 55, 89–116.

    Article  Google Scholar 

  • Zahalak, G. I. and Ma, S.-P. (1990) Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics. J. Biomech. Eng. 112, 52–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Skeletal Muscle. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics