Skip to main content

Heart Muscle

  • Chapter
Biomechanics

Abstract

Both myocardial and skeletal muscle cells are striated. Their ultrastructures are similar. Each cell is made up of sarcomeres (from Z line to Z line), containing interdigitating thick myosin filaments and thin actin filaments. The basic mechanism of contraction must be similar in both; but important differences exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, B. C. and Mommaerts, W. F. H. M. (1959) Study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42, 533–551.

    Article  PubMed  CAS  Google Scholar 

  • Allen, D. G. (1985) The cellular basis of the length-tension relaton in cardiac muscle. J. Mol. Cell Cardiol. 17, 821–840.

    Article  PubMed  CAS  Google Scholar 

  • Berne, R. M. and Levy, M. N. (1972) Cardiovascular Physiology, 2nd edition. C. V. Mosby, St. Louis.

    Google Scholar 

  • Bogen, D. K. (1987) Strain-energy descriptions of biological swelling. I: Single Fluid Compartment Models; II: Multiple Fluid Compartment Models. J. Biomech. Eng. 109, 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Borelli, Giovanni Alfonso (1680) De Motu Animalium, first half published posthumously in 1680, second half published in 1681. Translated by Paul Maquet under the title of On The Movement of Animals. Springer-Verlag, Berlin (1989).

    Google Scholar 

  • Bornhorst, W. J. and Mirandi, J. E. (1969) Comparison of Caplan’s irreversible thermodynamics theory of muscle contraction with chemical data. Biophys. J. 9, 654–665.

    Article  PubMed  CAS  Google Scholar 

  • Brady, A. J. (1965) Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed. Proc. 24, 1410 1420.

    Google Scholar 

  • Brady, A. (1979) Mechanical properties of cardiac fibers. In Handbook of Physiology, Sec. 2, The Circulation System, Vol. 1: The Heart. American Physiological Society, Bethesda, MD, Chap. 12, pp. 461–474.

    Google Scholar 

  • Brutsaert, D. I. and Sonnenblick, E. H. (1969) Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circulation Res. 24, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Brutsaert, D. L., Victor, A. C., and Ponders, J. H. (1972) Effect of controlling the velocity of shortening on force-velocity-length and time relations in cat papillary muscle velocity clamping. Circulation Res. 30, 310–315.

    Article  PubMed  CAS  Google Scholar 

  • Caulfield, J. B. and Borg, T. K. (1979) The collagen network of the heart. Lab. Invest. 40, 364–372.

    PubMed  CAS  Google Scholar 

  • Daniels, M., Noble, M., ter Keurs, H., and Wohlfart, B. (1984) Velocity of sarcomere shortening in rat cardiac muscle: Relationship to force, saromere length, calcium, and time. J. Physiol. 355, 367–381.

    Google Scholar 

  • Edman, K. A. P. and M. Johannsson (1976) The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. 245, 565–581.

    Google Scholar 

  • Edman, K. A. P. and Nilsson, E. (1968) The mechanical properties of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72, 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Edman, K. A. P. and Nilsson, E. (1972) Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85, 488–500.

    Article  PubMed  CAS  Google Scholar 

  • Ford, L. E., Huxley, A. F., and Simmons, R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibers. J. Physiol. 311, 219–249.

    PubMed  CAS  Google Scholar 

  • Frank, J. S. and Langer, G. A. (1974) The myocardial interstitium: Its structure and its role in ionic exchange. J. Cell Biol. 60, 596–601.

    Article  Google Scholar 

  • Fung, Y. C. (1970) Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3, 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1971a) Comparison of different models of the heart muscle. J. Biomech. 4, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. (1971b) Muscle controlled flow. In Proc. 12th Midwest Mechanics Conf. University of Notre Dame Press, Notre Dame, IN, pp. 33–62.

    Google Scholar 

  • Fung, Y. C. (1972) Stress—strain-history relations of soft tissues in simple elongation. In Biomechanics, Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 191–208.

    Google Scholar 

  • Gay, W. A. and Johnson, E. A. (1967) Anatomical evaluation of the myocardial length-tension diagram. Circulation Res. 21, 33–43.

    Article  PubMed  Google Scholar 

  • Glass, L. Hunter, P., and McCulloch, A. (eds.) (1991) Theory of Heart. Springer-Verlag, New York.

    Google Scholar 

  • Green, A. E. and Adkins, J. E. (1960) Large Elastic Deformations. Oxford University Press, London.

    Google Scholar 

  • Guccione, J. M. and McCulloch, A. (1991) Finite element modeling of ventricular mechanics. In Theory of Heart, Glass et al. (eds.) pp. 121–144.

    Google Scholar 

  • Guccione, J. M., McCulloch, A. D., and Waldman, L. K. (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55.

    Article  PubMed  CAS  Google Scholar 

  • Hefner, L. L. and Bowen, T. E., Jr. (1967) Elastic components of cat papillary muscle. Am. J. Physiol. 212, 1221–1227.

    PubMed  CAS  Google Scholar 

  • Hill, A. V. (1949) The abrupt transition from rest to activity in muscle. Proc. Roy. Soc. London B 136, 399–420.

    Article  CAS  Google Scholar 

  • Horowitz, A., Lanir, Y., Yin, F. C. P., Perl, M., Sheinman, I., and Strumpf, R. K. (1988) Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110, 200–207.

    Google Scholar 

  • Hort, W. (1960) Makroskopische and mikrometrische Untersuchungen am Myodard verschieden stark gefüllter linker Kammern. Virchows Arch [Pathol Anat.] 333, 523–564.

    Article  CAS  Google Scholar 

  • Huisman, R. M., Sipkema, P., Westerhof, N., and Elzinga, G. (1980) Comparison of model used to calculate left ventricle wall force. Med. Biol. Eng. Comput. 18, 122–144.

    Google Scholar 

  • Humphrey, J. D. and Yin, F. C. P. (1988) Biaxial mechanical behavior of excised epicardium. J. Biomech. Eng. 110, 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, J. D., Strumpf, R. H., and Yin, F. C. P. (1990) Determination of a constitutive relation for passive myocardium. I. A nero-functional form, II. Parameter identification. J. Biomech. Eng. 112, 333–339, 340–346.

    Google Scholar 

  • Humphrey, J. Strumpf, R. Halperin, H. and Yin, F. (1991) Toward a stress analysis in the heart. In Theory of Heart,Glass et al. (eds.) Springer-Verlag, New York, pp. 59–75.

    Google Scholar 

  • Huntsman, L. L., Rondinone, J. F., and Martyn, D. A. (1983) Force-length relations in cardiac muscle segments. Am. J. Physiol. 244, H701 — H707.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1957) The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol. 3, 631–648.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscular contraction. Science 164, 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  • Jewell, B. R. (1977) A reexamination of the influence of muscle length on myocardial performance. Circulation Res. 40, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Korecky, B. and Rakusan, K. (1983) Effects of hemodynamic load on myocardial fiber orientation. In Cardiac Adaptation to Hemodynamic Overload, Training, and Stress, International Erwin Riesch Symp., Tübingen, September 19–22, 1982, Dr. S. Steinkopff Verlag.

    Google Scholar 

  • Kreuger, J. W. and Pollack, G. H. (1975) Myocardiac sarcomere dynamics during isometric contraction. J. Physiol. (London) 251, 627–643.

    Google Scholar 

  • Lanir, Y. (1983) Constitutive equatons for fibrous connective tissue. J. Biomech. 16, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.-C., LeWinter, M. M., Freeman, G., Shabetai, R., and Fung, Y. C. (1985) Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Am. J. Physiol. 249, H222 — H230.

    Google Scholar 

  • Martyn, D. A., Rondinone, J. F., and Huntsman, L. L. (1983) Myocardial segment velocity at a low load: Time, length, and calcium dependence. Am. J. Physiol. 244, H708 — H714.

    Google Scholar 

  • McCulloch, A. D., Smail, B. H., and Hunter, P. J. (1989) Regional left ventricular epicardial deformation in the passive dog heart. Circulation Res. 64, 721–733.

    Google Scholar 

  • Nevo, E. and Lanir, Y. (1989) Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Eng. 111, 343–349.

    Article  Google Scholar 

  • Noble, M. I. M., Bowen, T. E., and Hefner, L. L. (1969) Force-velocity relationship of cat cardiac muscle, studied by isotonic and quick-release techniques. Circulation Res. 24, 821–834.

    Google Scholar 

  • Parmely, W. W. and Sonnenblick, E. H. (1967) Series elasticity in heart muscle; its relation to contractile element velocity and proposed muscle models. Ciruclation Res. 20, 112–123.

    Article  Google Scholar 

  • Parmley, W. W., Brutsaert, D. L., and Sonnenblick, E. H. (1969) Effects of altered loading on contractile events in isolated cat papillary muscle. Circulation Res. 24, 521–532.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, S. W., Piper, H., and Starling, E. H. (1914) The regulation of the heart beat. J. Physiol. 48, 465–513.

    Google Scholar 

  • Peachey, L. D. (1965) The sarcoplasmic reticulum and transverse tubles of the frog sartorius. J. Cell Biol. 25, 209–231.

    Article  PubMed  Google Scholar 

  • Pietrabissa, R., Montevecchi, F. M., and Fumero, R. (1991) Mechanical characterization of a model of a multicomponent cardiac fibre. J. Biomed. Eng. 13, 407–414.

    Google Scholar 

  • Pinto, J. G. and Fung, Y. C. (1973) Mechanical properties of the heart muscle in the passive state. J. Biomech. 6 596–616.

    Google Scholar 

  • Pinto, J. G. and Fung, Y. C. (1973) Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomech. 6 617–630.

    Google Scholar 

  • Pinto, J. G. and Patitucci, P. (1977) Creep in cardiac muscle. Am. J. Physiol. 232, H553 — H563.

    PubMed  CAS  Google Scholar 

  • Pinto, J. G. (1987) A constitutive description of contracting papillary muscle and its implications to the dynamics of the intact heart. J. Biomech. Eng. 109, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, J. G. and Boe, A. (1991) A method to characterize the passive elasticity incontracting muscle bundles. J. Biomech. Eng. 113, 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, G. H., Huntsman, L. L., and Verdugo, P. (1972) Circulation Res. 31, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. F. (1983) The physiological relationship between connective tissue and contractile elements in heart muscle. The Einstein Q. 1, 121–127.

    Google Scholar 

  • Robinson, T. F., Cohen-Gould, L., and Factor, S. M. (1983) Skeletal framework of mammalian heart muscle. Lab. Invest. 49, 482–498.

    PubMed  CAS  Google Scholar 

  • Ross, Jr., J., Covell, J. W., Sonnenblick, E. H., and Braunwald, E. (1966) Contractile state of the heart. Circulation Res. 18, 149–163.

    Article  Google Scholar 

  • Schmid-Schönbein, G. W., Skalak, R. C., Engelson, E. T., and Zweifach, B. W. (1986) Microvascular network anatomy in rat skeletal muscle. In Microvascular Network: Experimental and Theoretical Studies, A. S. Popel and P. C. Johnson (eds.) Karger, Basel, pp. 38–51.

    Google Scholar 

  • Schmid-Schönbein, G. W., Skalak, T. C., and Sutton, D. W. (1989) Bioengineering analysis of blood flow in resting skeletal muscle. In Microvascular Mechanics, J.-S. Lee and T. C. Skalak (eds.) Springer-Verlag, New York, pp. 65–99.

    Chapter  Google Scholar 

  • Sommer, J. R. and Johnson, E. A. (1979) Ultrastructure of cardiac muscle. In Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1: The Heart. American Physiological Society, Bethesda, MD, Chap. 5, pp. 113–186.

    Google Scholar 

  • Sonnenblick, E. H. (1964) Series elastic and contractile elements in heart muscle: Changes in muscle length. Am. J. Physiol. 207, 1330–1338.

    PubMed  CAS  Google Scholar 

  • Sonnenblick, E. H., Ross, J. Jr., Covell, J. W., Spotnitz, H. M., and Spiro, D. (1967) Ultrastructure of the heart in systole and diastole: Changes in sarcomere length. Circulation Res. 21, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Taber, L. A. (1991) On a nonlinear theory for muscle shells: Part I: Theoretical Development. Part II: Applicaton to the Beating Left Ventricle. J. Biomech. Eng. 113, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Ter Keurs, H. E. D. J., Rijnsburger, W. H., van Heuningen, R., and Nagelsmit, M. (1980) Tension development and sarcomere length in rat cardiac trabecular. Circulation Res. 46, 703–714.

    Article  PubMed  Google Scholar 

  • Ter Keurs, H. E. D. J., and Tyberg, J. V. (eds.) (1987) Mechanics of the Circulation, Martininus Nijhoff, Pub.

    Google Scholar 

  • Waldman, L. K. (1991) Multidimensional measurement of regional strains in the intact heart. In Theory of Heart, Glass et al. (eds.) Springer-Verlag, New York, pp. 145–174.

    Chapter  Google Scholar 

  • Waldman, L. K., Fung, Y. C., and Covell, J. W. (1985) Transmural myocardial deformation in the canine left ventricle: Normal in vivo three-dimensional finite strains. Circulation Res. 57, 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, L. K., Nosan, D., Villarreal, F. J., and Covell, J. W. (1988) Relation between transmural deformaton and local myofiber direction in canine left ventricle. Circulation Res. 63, 550–652.

    Article  PubMed  CAS  Google Scholar 

  • Warwick, R. and Williams, P. L. (eds.) Gray’s Anatomy. 35th British Edition. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Whalen, W. J., Nair, P., and Ganfield, R. A. (1973) Measurements of oxygen tension in tissues with a micro oxygen electrode. Microvasc. Res. 5, 254–262.

    Article  PubMed  CAS  Google Scholar 

  • Yin, F. C. P. (1981) Ventricular wall stress. Circulation Res. 49, 829–842.

    Article  PubMed  CAS  Google Scholar 

  • Yin, F. C. P., Strumpf, R. K., Chew, P. H., and Zeger, S. L. (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20, 577–589.

    Article  PubMed  CAS  Google Scholar 

  • Zahalak, G. I. (1986) A comparison of the mechanical behavior of the cat coleus muscle with a distribution-moment model. J. Biomech. Eng. 108, 131–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Heart Muscle. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics