Skip to main content

Is Dopamine a Neurotransmitter within the Ventral Pallidum/Substantia Innominata?

  • Chapter
The Basal Forebrain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 295))

Abstract

In a classic treatise titled “Criteria for Identification of a Central Nervous System Transmitter” (1966), R. Werman provided a basis by which a chemical found in the brain could be classified as involved in the communication from one nerve cell to another. As listed in Werman’s paper, the criteria are:

“The Criterion of the Inactivating Enzyme.

The Criterion of the Presence of the Transmitter.

The Criterion of Collectability of the Transmitter.

The Criterion of the Synthesizing Enzyme.

The Criterion of the Presence of Precursors.

The Criterion of a Specific Release Mechanism.

The Criterion of Identical Actions.

The Criterion of Pharmacological Identity.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aston-Jones G., Shaver R., and Dinan T.G., 1985, Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Res., 325:271.

    Article  PubMed  CAS  Google Scholar 

  • Barchas, J.D., Akil, H., Elliott, G.R., Holman, R.B., and Watson, S.J., 1978, Behavioral neurochemistry: Neuroregulators and behavioral states, Science., 200:964.

    Article  PubMed  CAS  Google Scholar 

  • Beatty W.W., and Rush J.R., 1983, Spatial working memory in rats: Effects of monoaminergic antagonists, Pharmacol. Biochem. Behav., 18:7.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead R.M., 1988, Association of dopamine D1 and D2 receptors with specific cellular elements in the basal ganglia of the cat: The uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons, Neuroscience. 27:851.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead R.M., Wooten G.F., and Trugman J.M., 1988, Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography, J. Compar. Neurol., 268:131.

    Article  CAS  Google Scholar 

  • Besson M.-J., Graybiel A.M., and Nastuk M.A., 1988, [3H]SCH 23390 binding to D1 dopamine receptors in the basal ganglia of the cat and primate: Delineation of striosomal compartments and pallidal and nigral subdivisions, Neuroscience., 26:101.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F.E., Costa, E., and Salmoiraghi, G.C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharm. Exp. Therap., 150:244.

    CAS  Google Scholar 

  • Camps M., Cortes R., Gueye B., Probst A., and Palacios J.M., 1989a Dopamine receptors in human brain: Autoradiographic distribution of D2 sites, Neuroscience, 28:275.

    Article  PubMed  CAS  Google Scholar 

  • Camps M., Kelly P.H., and Palacios, J.M., 1989b, Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species, J. Neural. Transm., 80:105.

    Article  Google Scholar 

  • Carnoy P., Ravard S., Wemerman B., Soubrie P.H, Simon P., 1986, Behavioral deficits induced by low doses of apomorphine in rats: Evidence for a motivational and cognitive dysfunction which discriminates among neuroleptic drugs, Pharmacol. Biochem. Behav., 25:503.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J.D., 1970, Caudate nucleus neurones: Correlation of the effects of substantia nigra stimulation with iontophoretic dopamine, J. Physiol., 208:691.

    PubMed  CAS  Google Scholar 

  • Contreras P.C., Quirion R., Gehlert D.R., Contreras M.L., and O’Donohue T.L., 1987, Autoradiographic distribution of non-dopaminergic binding sites labeled by [3H] haloperidol in rat brain, Neurosci. Lett., 75:133.

    Article  PubMed  CAS  Google Scholar 

  • Cortes R., Gueye B., Pazos A., Probst A., and Palacios J.M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D1 sites, Neuroscience. 23:263.

    Article  Google Scholar 

  • Dawson T.M., Barone P., Sidhu A., Wamsley J.K., and Chase T.N., 1986, Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: Use of the iodinated ligand [1251]SCH23390. Neurosci. Lett., 68:261.

    Article  PubMed  CAS  Google Scholar 

  • DeLong M.R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol., 34:414.

    PubMed  CAS  Google Scholar 

  • Deutch A.Y., Goldstein M., Saldino F., Roth R.H., 1988, Telencephalic projections of the A8 dopamine cell group, in: “The Mesocorticolimbic Dopamine System, Annals of the New York Academy of Sciences”, Vol. 537, P.W. Kalivas, and C.B. Nemeroff, eds., New York: The New York Academy of Sciences, p 27.

    Google Scholar 

  • Fallon J.H., Moore R.Y., 1978, Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum, J. Comp. Neurol., 180:545.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H.C., Damsma, G. and Day, J.C. 1991, Behavioral pharmacology and biochemistry of central cholinergic neurotransmission, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds. New York, Plenum Publishing Corporation, in press.

    Google Scholar 

  • Gehlert D.R., and Wamsley J.K., 1985, Dopamine receptors in the rat brain: Quantitative autoradiographic localization using [3H]sulpiride. Neurochem. Int., 7:717.

    Article  PubMed  CAS  Google Scholar 

  • Geula C., and Slevin J.T., 1989, Substantia nigra 6-hydroxydopamine lesions alter dopaminergic synaptic markers in the nucleus basalis magnocellularis and striatum of rats. Synapse. 4:248.

    Article  PubMed  CAS  Google Scholar 

  • Grove E.A., 1988, Neural associations of the substantia innominata in the rat: afferent connections, J. Comp. Neurol., 277:315.

    Article  PubMed  CAS  Google Scholar 

  • Haring J.H., and Wang R.Y., 1986, The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res., 366:152.

    Article  PubMed  CAS  Google Scholar 

  • Hubner C.B., and Koob G.F., 1990, The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res. 508:20.

    Article  PubMed  CAS  Google Scholar 

  • Huston J.P., Kiefer S., Buscher W., and Monoz C., 1987, Lateralized functional relationship between the preoptic area and lateral hypothalamic reinforcement. Brain Res. 436:1.

    Article  PubMed  CAS  Google Scholar 

  • Jones B.E., and Cuello A.C., 1989, Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons, Neuroscience. 31:37.

    Article  PubMed  CAS  Google Scholar 

  • Jones D.L., and Mogenson G.J., 1980, Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity, Amer. J. Physiol., 238:R65-R69.

    PubMed  CAS  Google Scholar 

  • Lamour Y., Dutar P., Rascol O., and Jobert A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: Electrophysiological and pharmacological properties. Brain Res., 362:122.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., and Bjorklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain, ACTA Physiol. Scand., Supp. 412:1.

    CAS  Google Scholar 

  • Lindvall O., and Bjorklund A., 1979, Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res., 172:169.

    Article  PubMed  CAS  Google Scholar 

  • Linseman M.A., 1974, Inhibitory unit activity of the ventral forebrain during both appetitive and aversive Pavlovian conditioning. Brain Res., 80:146.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Murillo R., Semenenko F., and Cuello A.C., 1988, The origin of tyrosine hydroxylase-immunoreactive fibers in the regions of the nucleus basalis magnocellularis of the rat. Brain Res., 451:227.

    Article  PubMed  CAS  Google Scholar 

  • Maslowski, R.J., and Napier, T.C., 1991, Dopamine D1 and D2 agonists induce opposite changes in the firing rate of ventral pallidal neurons, Eur. J. Pharmacol., in press.

    Google Scholar 

  • McGeer P.L., McGeer E.G., Kimura H., and Peng J.-F., 1986, Cholinergic neurons and cholinergic projections in the mammalian CNS, in: “Dynamics of Cholinergic Function: Advances in Behavioral Biology”, Vol 30, I. Hanin, ed., Plenum Press: New York p 11.

    Google Scholar 

  • McGurk S.R., Levin E.D. and Butcher L.L., 1988, Cholinergic-dopaminergic interactions in radial-arm maze performance, Behav. Neural Biol., 49:234.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson G.J., Jones, D.L., and Yim, C.Y., 1980, From motivation to action: functional interface between the limbic system and the motor system, Prog. Neurobiol., 14:69.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson G.J., and Yang C.R., 1991, The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds, New York, Plenum Publishing Corporation, in press.

    Google Scholar 

  • Mora F., Rolls E.T., and Burton M.J., 1976, Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food, Exp. Neurol., 53:508.

    Article  PubMed  CAS  Google Scholar 

  • Napier T.C., and Potter P.P., 1989, Dopamine in the rat ventral pallidum/substantia innominata: Biochemical and electrophysiological studies, Neuropharmacology., 28:757.

    Article  PubMed  CAS  Google Scholar 

  • Napier, T.C., Simson, P.E. andGivens, B.S., 1991, Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: Comparison with the dorsal globus pallidus. J. Pharmacol. Exp. Therap. in press.

    Google Scholar 

  • Olton D., Markowska A., Voytko M.L., Givens B., Gorman L., and Wenk G., 1990, Basal forebrain cholinergic system: A functional analysis, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin eds. New York: Plenum Publishing Corporation, in press.

    Google Scholar 

  • Pirch J.H., 1977a, Effects of amphetamine and chlorpromazine on brain slow potentials in the rat, Pharmacol. Res. Comm., 9:669.

    Article  CAS  Google Scholar 

  • Pirch J.H., 1977b, Amphetamine effects on brain slow potentials associated with discrimination in the rat, Pharmacol. Biochem. Behav., 6:697.

    Article  PubMed  CAS  Google Scholar 

  • Pirch J.H., 1980, Effects of dextroamphetamine on event-related potentials in rat cortex during a reaction time task. Neuropharmacology., 19:365.

    Article  PubMed  CAS  Google Scholar 

  • Pirch, J.H. and Corbus, M.J., 1983, Haloperidol antagonism of amphetamine-induced effects on event-related slow potentiate from rat cortex. Int. J. Neurosci., 18:137.

    Article  PubMed  CAS  Google Scholar 

  • Pirch J.H., Corbus M.J., and Napier T.C., 1981a, Auditory cue preceding intracranial stimulation induces event-related potential in rat frontal cortex: Alterations by amphetamine. Brain Res. Bull., 7:799.

    Article  Google Scholar 

  • Pirch J.H., Corbus M.J., Rigdon G.C., and Lyness W.H., 1986, Generation of cortical event-related slow potentials in the rat involves nucleus basalis cholinergic innervation, Electroencephalogr. Clin. Neurophysiol., 63:464.

    Article  PubMed  CAS  Google Scholar 

  • Pirch J.H., Napier T.C., and Corbus M.J., 1981b, Brain stimulation as a cue for event-related potentials in rat cortex: Amphetamine effects. Int. J. Neurosci., 15:217.

    Article  PubMed  CAS  Google Scholar 

  • Pirch, J.H., Rigdon, G.C., Rucker, H.K. and Turco, K, 1991, Basal forebrain modulation of cortical cell activity during conditioning, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds, New York, Plenum Publishing Corporation, in press.

    Google Scholar 

  • Reiner P.B., Semba K., Fibiger H.C., and McGeer E.G., 1987, Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat, Neuroscience. 20:629.

    Article  PubMed  CAS  Google Scholar 

  • Richardson R.T., and DeLong M.R., 1986, Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364.

    Article  PubMed  CAS  Google Scholar 

  • Richardson R.T., and DeLong, M.R., 1991, Electrophysiological studies of the functions of the nucleus basalis in primates, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds., New York, Plenum Publishing Corporation, in press.

    Google Scholar 

  • Richfield E.K., Penney J.B., and Young A.B., 1989, Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system, Neuroscience. 30:767.

    Article  PubMed  CAS  Google Scholar 

  • Rolls E.T., Burton M.J., and Mora F., 1980, Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res., 194:339.

    Article  PubMed  CAS  Google Scholar 

  • Rolls E.T., Sanghera M.K., Roper-Hall A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res., 164:12.

    Article  Google Scholar 

  • Russchen F.T., Amaral D.G., and Price J.L., 1985, The afferent connections of the substantia innominata in the monkey, Macaca fascicularis, J. Comp. Neurol., 242:1.

    Article  PubMed  CAS  Google Scholar 

  • Semba K., Reiner P.B., McGeer E.G., and Fibiger H.C., 1988, Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat, J. Comp. Neurol., 267:433.

    Article  PubMed  CAS  Google Scholar 

  • Voorn P., Jorritsma-Byham B., Van Dijk C., and Buijs R.M., 1986, The dopaminergic innervation of the ventral striatum in the rat: A light- and electron-microscopical study with antibodies against dopamine, J. Comp. Neurol., 267:433

    Google Scholar 

  • Werman, R., 1966, A review - Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol., 18:745.

    Article  PubMed  CAS  Google Scholar 

  • Wilson F.A.W., and Rolls E.T., 1990, Neuronal responses related to reinforcement in the primate basal forebrain. Brain Res., 509:213.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, F.A.W., 1991, The relationship between learning, memory and neuronal responses in the primate basal forebrain, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds. New York, Plenum Publishing Corporation, in press.

    Google Scholar 

  • Wise R.A., 1980, The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends in Neurosci., 3:91.

    Article  CAS  Google Scholar 

  • Woodruff, G.N., McCarthy P.S., and Walker R.J., 1976, Studies on the pharmacology of neurons in the nucleus accumbens of the rat, Brain Res., 11:233.

    Article  Google Scholar 

  • Yang C.R., and Mogenson G.J., 1989, Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res., 489:237.

    Article  PubMed  CAS  Google Scholar 

  • York D.H., 1970, Possible dopaminergic pathway from substantia nigra to putamen, Brain Res., 20:233.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L., 1989, Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers, in: “Central Cholinergic Synaptic Transmission” M. Frotscher, U. Misgeld, eds., Basel Switzerland: Birkhauser Verlag, p. 12.

    Chapter  Google Scholar 

  • Zaborszky, L., Luine, V.N., Cullinan, W.E., Allen, D.L., and Heimer, L., 1991, Direct catecholaminergic-cholinergic interactions in the basal forebrain: Morphological and biochemical studies, (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Napier, T.C., Muench, M.B., Maslowski, R.J., Battaglia, G. (1991). Is Dopamine a Neurotransmitter within the Ventral Pallidum/Substantia Innominata?. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics