Skip to main content

Part of the book series: Methods of Surface Characterization ((MOSC,volume 1))

Abstract

Before embarking on this chapter it is worth reflecting on the current status of the spectroscopic methods, and in particular electron spectroscopy, in modern surface science, and in so doing show why high-resolution electron energy loss spectroscopy (EELS) for the vibrational analysis of adsorbed molecules is already and will become increasingly the technique to open up a new understanding of surface science in general and surface chemistry in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. H. Little, Infrared Spectra of Adsorbed Species, Academic, New York (1966).

    Google Scholar 

  2. F. M. Probst and T. C. Piper, Detection of vibrational states of gases adsorbed on tungsten by low-energy electron scattering, J. Vac. Sci. Techol. 4, 53–56 (1967).

    Article  Google Scholar 

  3. H. Froitzheim and H. Ibach, Interband transitions in zinc oxide observed by low-energy electron spectroscopy, Z. Phys. 269, 17–22 (1974).

    Article  CAS  Google Scholar 

  4. H. Froitzheim, H. Ibach, and S. Lehwald, Reduction of spurious background peaks in electron spectrometers, Rev. Sci. Instrum. 46, 1325–1328 (1975).

    Article  CAS  Google Scholar 

  5. C. E. Kuyatt, and J. A. Simpson, Electron monochromator design, Rev. Sci. Instrum. 38, 103–111 (1967).

    Article  CAS  Google Scholar 

  6. W. Steckelmacher, Energy analysers for charged particles, J. Phys. E 6, 1061–1071 (1973).

    Article  CAS  Google Scholar 

  7. F. H. Read, J. Comer, R. E. Imhof, J. N. H. Brunt, and E. Harting, The optimization of electrostatic energy selection systems for low energy electrons, J. Electron. Spectrosc. Relat. Phenom. 4, 293–312 (1974).

    Article  CAS  Google Scholar 

  8. H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York (1982).

    Google Scholar 

  9. D. Roy and J. D. Carette, Design of electron spectrometers for surface analysis, in: Electron Spectroscopy for Surface Analysis (H. Ibach, ed.), Chap. 2, pp. 13–58, Springer-Verlag, Berlin (1977).

    Chapter  Google Scholar 

  10. S. Andersson, Surface vibrations of oxygen and sulphur on Ni, Surf. Sci. 79, 385–393 (1979).

    Article  CAS  Google Scholar 

  11. B. A. Sexton, High resolution electron energy loss spectrometer for vibrational surface studies, J. Vac. Sci. Technol. 16, 1033–1036 (1979).

    Article  CAS  Google Scholar 

  12. L. L. Kesmodel, New high resolution electron spectrometer for surface vibrational analysis, J. Vac. Sci. Technol. A 1, 1456–1460 (1983).

    Article  CAS  Google Scholar 

  13. G. E. Thomas and W. H. Weinberg, Versatile electron spectrometer for surface studies, Rev. Sci. Instrum. 50, 497–501 (1979).

    Article  CAS  Google Scholar 

  14. N. R. Avery, Vibrational spectroscopy of CO adsorbed on a Pt(111) surface, Appl. Surf. Sci. 13, 171–179 (1982).

    Article  CAS  Google Scholar 

  15. P. Thiry, J. J. Pireaux, and R. Caudona, A. versatile electron spectrometer for the study of solid surfaces, Phys. Mag. 4, 35–47 (1981).

    CAS  Google Scholar 

  16. S. D. Kevan and L. H. Dubois, Development of dispersion compensation for use in high-resolution electron-energy-loss spectroscopy, Rev. Sci. Instrum. 55, 1604–1612 (1984).

    Article  CAS  Google Scholar 

  17. S. Lewhald, H. Ibach, and J. E. Demuth, Vibration spectroscopy of benzene adsorbed on Pt(111) and Ni(111), Surf. Sci. 78, 577–590 (1978).

    Article  Google Scholar 

  18. W. Ho, Time resolved electron energy loss spectroscopy of surface kinetics, J. Vac. Sci. Technol. A 3, 1432–1438 (1985).

    Article  CAS  Google Scholar 

  19. D. W. Turner, High resolution molecular photoelectron spectroscopy, Proc. R. Soc. London A307, 15–26 (1968).

    Google Scholar 

  20. M. E. Rudd, in Low Energy Electron Spectrometry (K. D. Sevier, ed.), Wiley-Interscience, New York, pp. 17–32 1972.

    Google Scholar 

  21. J. N. H. Brunt, F. H. Read, and G. C. King, The realization of high energy resolution using the hemispherical electrostatic energy selector in electron impact spectrometry, J. Phys. E 10, 134–139 (1977).

    Article  CAS  Google Scholar 

  22. H. Wollnik and H. Ewald, The influence of magnetic and electric fringe fields on the trajectories of charged particles, Nucl. Instrum. Methods 36, 93–104 (1965).

    Article  Google Scholar 

  23. E. Harting and F. H. Read, Electrostatic Lenses, Elsevier, New York (1967).

    Google Scholar 

  24. A. Adams and F. H. Read, Electrostatic cylinder lenses III: Three element asymmetric voltage lenses, J. Phys. E 5, 1500–155 (1972).

    Google Scholar 

  25. J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).

    Google Scholar 

  26. P. J. Bassett, T. E. Gallon, and M. Prutton, A high energy resolution Auger electron spectrometer using concentric hemispheres, J. Phys. E 5, 1008–1013 (1972).

    Article  CAS  Google Scholar 

  27. A. Lahman-Bennani and A. Dugult, Reduction of energy-loss “Ghost structures” observed in electrostatic deflection type electron analysers, J. Electron Spectrosc. Relat. Phenom. 18, 145–152 (1980).

    Article  Google Scholar 

  28. J. E. Katz, P. W. Davies, J. E. Crowell, and G. A. Somorjai, Design and construction of a high-stability, low-noise power supply for use with high-resolution electron loss spectrometers, Rev. Sci. Instrum. 53, 785–789 (1982).

    Article  CAS  Google Scholar 

  29. P. Feutner and D. Menzel, Simple ways to improve “flash desorption” measurements from single crystal surfaces, J. Vac. Sci. Technol. 17, 662–663 (1980).

    Article  Google Scholar 

  30. N. R. Avery, A EELS and TDS study of molecular oxygen desorption and decomposition on Pt(lll), Chem. Phys. Lett. 96, 371–373 (1983).

    Article  CAS  Google Scholar 

  31. N. R. Avery, Adsorption and reactivity of cyclopentane on Pt(111), Surf. Sci. 163, 357–368 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avery, N.R. (1987). Electron Energy Loss Spectroscopy. In: Yates, J.T., Madey, T.E. (eds) Vibrational Spectroscopy of Molecules on Surfaces. Methods of Surface Characterization, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8759-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8759-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8761-9

  • Online ISBN: 978-1-4684-8759-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics