Skip to main content

Abstract

Homopolymers and random copolymers are relatively homogeneous in composition throughout their bulk. At the outermost molecular layer of such materials, the surface chemistry might differ substantially from the average bulk chemistry due to orientation effects, oxidation, or contamination. Graft copolymers and block copolymers, on the other hand, often demonstrate large compositional differences between surface and bulk and these differences can be observed over many molecular layers extending from the surface into the bulk (see Figure 1). This review article will concentrate on the nature of the differences between the bulk and surface of graft and block copolymers and on methods which can be used to explore the surfaces of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. R. M. Gallot, in: Advances in Polymer Science (H. J. Cantow, G. Dall’Asta, K. Dusek, J. D. Ferry, H. Fujita, M. Gordon, W. Kern, G. Natta, S. Okamura, C. G. Overberger, T. Saegusa, G. V. Schulz, W. P. Slichter, and J. K. Stille, eds.), Vol. 29, pp. 85–156, Springer-Verlag, Berlin (1978).

    Google Scholar 

  2. A. Noshay and J. E. McGrath, Block CopolymersOverview and Critical Survey, Academic Press, New York (1977).

    Google Scholar 

  3. H. A. J. Battaerd and G. W. Tregear, Graft Copolymers, Interscience Publishers, New York (1967).

    Google Scholar 

  4. N. R. Legge, G. Holden, S. Davison, and E. DeLaMare, in: Applied Polymer Science (J. K. Craver and R. W. Tess, eds.), pp. 394–429, Organic Coatings and Plastics Chemistry Division of the American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  5. G. M. Estes, S. L. Cooper, and A. V. Tobolsky, Block polymers and related heterophase elastomers, J. Macromol. Sci., Revs. Macromol. Chem. C4, 313–366 (1970).

    Article  Google Scholar 

  6. V. Stannett, Grafting, Radiat. Phys. Chem. 18, 215–222 (1981).

    CAS  Google Scholar 

  7. S. L. Cooper and G. M. Estes (eds.), Multiphase Polymers, ACS Advances in Chemistry Series, American Chemical Society, Washington, D.C. (1979).

    Google Scholar 

  8. S. Yamakawa, Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. I. Relationship between adhesive bond strength and surface composition, J. Appl. Polym. Sci. 20, 3057–3072 (1976).

    Article  CAS  Google Scholar 

  9. D. Lodesova, A. Pikier, M. Foldesova, and J. Tolgyessy, Contribution to the radiation-induced grafting of acrylonitrile and glycolmethacrylate to polypropylene, Radiochem. Radioanal. Lett. 32, 327–336 (1978).

    CAS  Google Scholar 

  10. S. Tazuke and H. Kimura, Surface photografting, 2. Modification of polypropylene film surface by graft polymerization of acrylamide, Makromol. Chem. 179, 2603–2612 (1978).

    Article  CAS  Google Scholar 

  11. Y. Ikada, H. Iwata, F. Horlii, T. Matsunaga, M. Taniguchi, M. Suzuki, W. Taki, S. Yamagata, Y. Yonekawa, and H. Handa, Blood compatibility of hydrophilic polymers, J. Biomed. Materials Res. 15, 697–718 (1981).

    Article  CAS  Google Scholar 

  12. S. Yamakawa and F. Yamamoto, Surface grafting of polyethylene by mutual irradiation in methyl acrylate vapor. III. Quantitative surface analysis by x-ray photoelectron spectroscopy, J. Polym. Sci., Polym. Phys. Ed. 17, 1581–1590 (1979).

    Article  Google Scholar 

  13. B. D. Ratner, Characterization of graft polymers for biomedical applications, J. Biomed. Materials Res. 14, 665–687 (1980).

    Article  CAS  Google Scholar 

  14. Y. Ikada, in: Advances in Polymer Science (H. J. Cantow, G. Dall’Asta, K. Dusek, J. D. Ferry, H. Fujita, M. Gordon, W. Kern, G. Natta, S. Okamura, C. G. Overberger, T. Saegusa, G. V. Schultz, W. P. Slichter, and J. K. Stille, eds.), Vol. 29, pp. 47–84, Springer-Verlag, Berlin (1978).

    Google Scholar 

  15. B. D. Ratner, P. K. Weathersby, A. S. Hoffman, M. A. Kelly, and L. H. Scharpen, Radiation-grafted hydrogels for biomedical applications as studied by the ESC A technique, J. Appl. Polym. Sci. 22, 643–664 (1978).

    Article  CAS  Google Scholar 

  16. Y. Yamashita and Y. Tsukahara, Control of polymer surface structure by tailored graft-copolymers, ACS Org. Coatings Appl. Polym. Sci. Proc. 46, 75–78 (1982).

    Google Scholar 

  17. F. J. Holly and M. F. Refojo, in: Hydrogels for Medical and Related Applications (J. D. Andrade, ed.), (1976).

    Google Scholar 

  18. F. J. Holly and M. F. Refojo, ACS Symp. Ser. 31, 252–266 (1976).

    Article  CAS  Google Scholar 

  19. D. S. Everhart and C. N. Reilley, The effects of functional group mobility on quantitative ESCA of plasma modified polymer surfaces, Surface Interface Anal. 3, 126–133 (1981).

    Article  CAS  Google Scholar 

  20. R. N. King, J. D. Andrade, S. M. Ma, D. E. Gregonis, and L. R. Brostrom, Interfacial characterization of hydrogel-water interfaces, in: Proceedings of the workshop on interfacial phenomena: Research needs and priorities, University of Washington, February 15–16, 1979, pp. 458–502, National Science Foundation, Washington, D.C. (1979).

    Google Scholar 

  21. Y. C. Ko, B. D. Ratner, and A. S. Hoffman, Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements, J.Colloid Interface Sci. 82, 25–37 (1981).

    Article  CAS  Google Scholar 

  22. R. G. Azrak, Surface property variations in melt-formed thermoplastics, J. Colloid Interface Sci. 47, 779–794 (1974).

    Article  CAS  Google Scholar 

  23. D. C. Cohn, A. S. Hoffman, and B. D. Ratner, Radiation grafted hydrogels for biomaterials applications: Synthesis, structure and composition of HEMA: EMA graft copolymers on LDPE film, Abstracts of the Fourth European Conference on Biomaterials, Belgium, August 31-September 2, 1983.

    Google Scholar 

  24. H. Yasuda, Glow discharge polymerization, J.Polym. Sci., Macromol. Rev. 16, 199–293 (1981).

    Article  CAS  Google Scholar 

  25. E. Kay and A. Dilks, Plasma polymerization of fluorocarbons in rf capacitively coupled diode system, J. Vac. Sci. Technol. 18, 1–11 (1981).

    Article  CAS  Google Scholar 

  26. H. V. Boenig, Plasma Science and Technology, Cornell University Press, Ithaca, New York (1982).

    Google Scholar 

  27. E. A. Hegazy, I. Ishigaki, A. Rabie, A. M. Dessouki, and J. Okamoto, Study on radiation grafting of acrylic acid onto fluorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene), J.Appl. Sci. 26, 3871–3883 (1981).

    Article  CAS  Google Scholar 

  28. A. Chapiro, Radiation induced grafting, Radiat. Phys. Chem. 9, 55–67 (1977).

    CAS  Google Scholar 

  29. T. Tagawa, J. Mori, S. Aita, and K. Ogura, Application of the high resolution SEM to the fine structure study of polyethylene, Micron 9, 215–221 (1978).

    Google Scholar 

  30. P. E. Gibson, M. A. Vallance, and S. L. Cooper, Morphology and properties of polyurethane block copolymers. Dev. Block Copolym. 1, 217–259 (1982).

    CAS  Google Scholar 

  31. D. A. Thomas, Morphology characterization of multiphase polymers by electron microscopy, J. Polym. Sci., Polym. Symp. 60, 189–200 (1977).

    CAS  Google Scholar 

  32. H. R. Thomas and J. J. O’Malley, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. Polystyrene/poly(ethylene oxide) diblock copolymers, Macromolecules 12, 323–329 (1979).

    Article  CAS  Google Scholar 

  33. E. J. Roche and E. L. Thomas, Defocus electron microscopy of multiphase polymers: use and misuse, Polymer 22, 333–341 (1980).

    Article  Google Scholar 

  34. S. Y. Hobbs and V. H. Watkins, The use of chemical contrast in the SEM analysis of polymer blends, J.Polym. Sci., Polym. Phys. Ed. 20, 651–658 (1982).

    Article  CAS  Google Scholar 

  35. J. M. Short and R. G. Crystal, Morphology of block copolymers, Appl. Polym. Symp. 16, 137–151 (1971).

    Google Scholar 

  36. J. N. Sultan, R. C. Laible, and F. J. McGarry, Microstructure of two-phase polymers, Appl. Polym. Symp. 16, 127–136 (1971).

    Google Scholar 

  37. J. D. Andrade, D. L. Coleman, and D. E. Gregonis, Characterization of polymer surface morphology by scanning electron microscopy using backscattered electron imaging, Makromol Chem., Rapid Commun. 1, 101–104 (1980).

    Article  CAS  Google Scholar 

  38. D. T. Clark, J. Peeling, and J. J. O’Malley, Application of ESCA to polymer chemistry. VIII. Surface structures of AB block copolymers of polydimethylsiloxane and polystyrene, J. Polym. Sci., Polym. Chem. Ed. 14, 543–551 (1976).

    Article  CAS  Google Scholar 

  39. D. Shuttleworth, J. G. VanDusen, J. J. O’Malley, and H. R. Thomas, An X-ray photoelectron study of low molecular weight polystyrene-polydimethyl siloxane block copolymers, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 20, 499–502 (1979).

    CAS  Google Scholar 

  40. J. E. McGrath, D. W. Dwight, J. S. Riffle, T. F. Davidson, D. C. Webster, and R. Viswanathan, Bulk and surface segregation in polycarbonate-polysulfone and polycarbonate-polydimethylsiloxane block copolymers, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 20 (2), 528–530 (1979).

    CAS  Google Scholar 

  41. D. G. LeGrand and G. L. Gaines, Jr., Surface activity of block copolymers of dimethyl-siloxane and bisphenol-A carbonate in polycarbonate, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 11, 442–446 (1970).

    CAS  Google Scholar 

  42. M. J. Owen and T. C. Kendrick, Surface activity of polystyrene-polysiloxane-polystyrene ABA block copolymers, Macromolecules 3, 458–461 (1970).

    Article  CAS  Google Scholar 

  43. G. L. Gaines Jr., and G. W. Bender, Surface concentration of a styrene-dimethylsiloxane block copolymer in mixtures with polystyrene, Macromolecules 5, 82–86 (1972).

    Article  CAS  Google Scholar 

  44. Y. Yamashita, Surface properties of styrene-tetrahydrofuran block copolymers, J. Macromol. Sci, Chem. 13, 401–413 (1979).

    Article  Google Scholar 

  45. K. Ito, N. Usami, and Y. Yamashita, Syntheses of methyl methacrylate-stearyl methacrylate graft copolymers and characterization by inverse gas chromatography, Macromolecules 13, 216–221 (1980).

    Article  CAS  Google Scholar 

  46. J. J. O’Malley, H. R. Thomas, and G. M. Lee, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. Polystyrene/poly(ethylene oxide) triblock copolymers, Macromolecules 12, 996–1001 (1979).

    Article  Google Scholar 

  47. H. R. Thomas and O’Malley, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy: Polystyrene/poly(ethylene oxide) homopolymer blends, Macromolecules 14, 1316–1320 (1981).

    Article  CAS  Google Scholar 

  48. T. J. Fabish and H. R. Thomas, Copolymer structure through charge injection and X-ray photoemission, ACS Org. Coatings Plastics Chem. Prepr. 42, 406–411 (1980).

    CAS  Google Scholar 

  49. S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, in: Biomaterials 1980 (G. D. Winter, D. F. Gibbons, and H. Plenk, Jr., eds.), pp. 519–530, John Wiley and Sons, Ltd., London (1982).

    Google Scholar 

  50. M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Materials Res. 17, 1–22 (1983).

    Article  CAS  Google Scholar 

  51. V. Sa Da Costa, D. Brier-Russell, E. W. Salzman, and E. W. Merrill, ESCA studies of polyurethanes: Blood platelet activation in relation to surface composition, J. Colloid Interface Sci. 80, 445–452 (1981).

    Article  CAS  Google Scholar 

  52. C. S. P. Sung and C. B. Hu, ESCA studies of surface chemical composition of segmented polyurethanes, J. Biomed. Materials Res. 13, 161–171 (1979).

    Article  CAS  Google Scholar 

  53. K. Knutson and D. J. Lyman, in: Biomaterials: Interfacial Phenomena and Applications (S. L. Cooper and N. A. Peppas, eds.), Adv. Chem. Ser. 199, 109–132 (1982).

    Chapter  Google Scholar 

  54. S. W. Graham and D. M. Hercules, Surface spectroscopic studies of Biomer, J. Biomed. Materials Res. 15, 465–477 (1981).

    Article  CAS  Google Scholar 

  55. E. Nyilas and R. S. Ward, Jr., in: Science and Technology of Polymer Processing (N. P. Suh and N. H. Sung, eds.), pp. 770–808, MIT Press, Cambridge, Massachusetts (1979).

    Google Scholar 

  56. S. I. Stupp, J. W. Kauffman, and S. H. Carr, Interactions between segmented polyurethane surfaces and the plasma protein fibrinogen. J. Biomed. Materials Res. 11, 237–250 (1977).

    Article  CAS  Google Scholar 

  57. B. D. Ratner, in: Photon, Electron, and Ion Probes of Polymer Structure and Properties (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), ACS Symp. Ser. 162, 371–382 (1981).

    Chapter  Google Scholar 

  58. B. D. Ratner, in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), Vol. 2, pp. 969–983, Plenum Publishing Corp., New York (1983).

    Google Scholar 

  59. C. B. Hu and C. S. P. Sung, Surface chemical composition-depth profile of polyether polyurethaneureas as studied by FT-IR and ESCA, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 21 (1), 156–158 (1980).

    Google Scholar 

  60. R. W. Paynter, B. D. Ratner, and H. R. Thomas, Polyurethane surfaces—An XPS study, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 24 (1), 13–14 (1983).

    CAS  Google Scholar 

  61. B. D. Ratner, R. W. Paynter, and H. R. Thomas, Polyurethane surfaces—An XPS study, Trans. Soc. Biomaterials 6, 21 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ratner, B.D. (1985). Graft Copolymer and Block Copolymer Surfaces. In: Andrade, J.D. (eds) Surface and Interfacial Aspects of Biomedical Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8610-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8610-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8612-4

  • Online ISBN: 978-1-4684-8610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics