Skip to main content

Theory of NMR Imaging

  • Chapter
NMR in the Life Sciences

Part of the book series: NATO ASI Series ((NSSA,volume 107))

  • 57 Accesses

Abstract

In conventional nuclear magnetic resonance (NMR) it is customary to place a small homogeneous specimen, typically less than 1 mâ„“, of pure liquid or solid in a very uniform magnetic field, often uniform to a part in 109, and NMR spectra and relaxation times are recorded and interpreted. In contrast with conventional NMR spectroscopy, NMR imaging is concerned with applications to heterogeneous specimens, for example parts of the human body, which are not small, and furthermore they are placed in a deliberately non-uniform magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. L. Hahn, Spin echoes, Phys. Rev. 94: 630(1950).

    Google Scholar 

  2. R. Gabillard, Resonance nucleaire mesure du temps de relaxation T2 en presence d’une inhomogeneite de champ magnetique superieure a la largeur de raie, C.R. Acad. Sci. Paris 232: 1551 (1951).

    CAS  Google Scholar 

  3. R. Gabillard, A steady state transient technique in nuclear resonance, Phys. Rev. 85: 694 (1952).

    Article  CAS  Google Scholar 

  4. H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 96: 630 (1954).

    Article  Google Scholar 

  5. G. K. Walters and W. M. Fairbank, Phase separation in He3–He4 solutions, Phys. Rev. 103: 262 (1956).

    Article  CAS  Google Scholar 

  6. A. G. Anderson, R. L. Garvin, E. L. Hahn et al, J. Appl. Phys. 26: 1324 (1955).

    Article  Google Scholar 

  7. E. R. Andrew, A. Finney and P. Mansfield, Information storage by NMR, Royal Radar Establishment Report PD/24/026/AT (1970).

    Google Scholar 

  8. P. Mansfield and P. K. Grannell, NMR diffraction in solids, J. Phys. C: Solid St. Phys. 6: L422 (1973).

    Article  CAS  Google Scholar 

  9. E. R. Andrew, NMR Imaging, Acc. Chem. Res. 16: 114 (1983).

    Article  CAS  Google Scholar 

  10. E. R. Andrew, NMR Imaging of intact biological systems, Phil. Trans. Roy. Soc. B 289: 471 (1980).

    Article  CAS  Google Scholar 

  11. E. R. Andrew, NMR imaging in medicine: physical principles, Phil. Trans. Roy. Soc. B in press (1985).

    Google Scholar 

  12. P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine, Academic Press, New York (1982).

    Google Scholar 

  13. P. Brunner and R. R. Ernst, Sensitivity and performance time in NMR imaging, J. Mag. Res. 33: 83 (1979).

    Article  CAS  Google Scholar 

  14. A. N. Garroway, P. K. Grannell and P. Mansfield, Image formation in NMR by a selective irradiative process, J. Phys. C: Solid St. Phys. 7: L 457 (1974).

    Article  Google Scholar 

  15. P. C. Lauterbur, C. S. Dulcey, C. M. Lai, et al, Magnetic Resonance Zeugmatography, Proc. 18th Ampere Congress, Nottingham 27 (1974).

    Google Scholar 

  16. P. C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance, Nature 262: 190 (1973).

    Article  Google Scholar 

  17. A. Kumar, D. Welti and R. R. Ernst, NMR Fourier zeugmatography, J. Mag. Res. 18: 69 (1975).

    Article  CAS  Google Scholar 

  18. W. Edelstein, J.M.S. Hutchison, G. Johnson and T. Redpath, Spin warp NMR imaging and applications to human whole-body imaging, Phys. Med. Biol. 25: 751 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. T. H. Mareci and R. H. Brooker, High-resolution magnetic resonance spectra from a sensitive region defined with pulsed field gradients, J. Mag. Res. 57: 157 (1984).

    Article  CAS  Google Scholar 

  20. R. Damadian, Tumor detection by nuclear magnetic resonance, Science 171: 1151 (1971).

    Article  PubMed  CAS  Google Scholar 

  21. P. Mansfield and I. L. Pykett, Biological and Medical imaging by NMR, J. Mag. Res. 29: 355 (1978).

    Article  Google Scholar 

  22. Rzedzian, R., Mansfield, P. et al., Real time NMR clinical imaging in paediatrics, Lancet 1983 ii, 1281.

    Article  Google Scholar 

  23. Mallard, J., Hutchison, J.M.S. et al. In vivo NMR imaging in medicine: the Aberdeen approach, Phil. Trans. Roy. Soc. B 289: 519 (1980).

    Article  CAS  Google Scholar 

  24. Fonar, Melville, New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Andrew, E.R. (1986). Theory of NMR Imaging. In: Bradbury, E.M., Nicolini, C. (eds) NMR in the Life Sciences. NATO ASI Series, vol 107. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8178-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8178-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8180-8

  • Online ISBN: 978-1-4684-8178-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics