Skip to main content

The Anatomy of Acoustic Structures in the Spinner Dolphin Forehead as Shown by X-Ray Computed Tomography and Computer Graphics

  • Chapter
Animal Sonar

Part of the book series: NATO ASI Science ((NSSA,volume 156))

Abstract

The dolphin’s unusual skull is characterized by profound displacement and modification of the bones composing the snout and pares, resulting from an evolutionary process referred to as “telescoping” (Miller, 1923). Deep within the forehead and acting as valves in the superior bony nares are two muscled nasal plugs. These both have connective tissue flaps (lips) on their lateral margins that may be involved in sound generation (Evans and Prescott, 1962). Above the nasal plugs the nasal passages empty into a single airway (spiracular cavity) which exits at the blowhole on top of the head. Along this airway are at least six blind-ended air sacs which are presumed to act as nearly perfect reflectors of sound propagated in the tissues of the forehead (Norris, 1964). The fatty melon is an ellipsoid structure anterior to the nasal passages that grades from a tough exterior shell, rich in connective tissue, to a pellucid fatty core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alcuri, G., 1980, “The role of cranial structures in odontocete sonar signal emission,” in: Animal Sonar Systems. J.F. Fish, ed., Plenum Press, New York.

    Google Scholar 

  • Altes. R. A. and W. E. Evans, 1975, “Cetacean Echolocation Signals and a New Model for the Human Glottal pulse.” J. Acoustic. Soc. Am., 57 (5): 1221.

    Article  CAS  Google Scholar 

  • Amundin. M. and S.H. Andersen, 1983, “Bony nares air pressure and nasal plug muscle activity during click production in the harbour porpoise, Phocoena phocoena and the bottlenosed dolphin, Tursiops truncatus,” J.’ Exp. Biol., 105: 275.

    Google Scholar 

  • Au. W.W.L., 1980, “Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters,” in: Animal Sonar Systems, J.F. Fish, ed., Plenum Press, New York.

    Google Scholar 

  • Boice, R.C., M.L. Swift, and J.C. Roberts, 1964, “Cross sectional anatomy of the dolphin,” Norsk Hvalfangst.Tidende (Norwegian Whaling Gazette). 53 (7): 177.

    Google Scholar 

  • Diercks, K.T., R.T. Trochta, C.F. Greenlaw, and W.E. Evans, 1971, “Recording and analysis of dolphin echolocation signals,” J. Acoust. Soc. Am., 49 (6): 1729.

    Article  Google Scholar 

  • Dormer, K.J., 1974, The mechanism of sound production and measurement of sound processing in Delphinid Cetaceans, University of California, Los Angeles. Ph.D. Dissertation.

    Google Scholar 

  • Dormer, K.J., 1979, “Mechanism of sound production and air recycling in delphinids: cineradiographic evidence,” J.’ Acoustic. Soc. Am., 65: 229.

    Google Scholar 

  • Dubrovskiy, N.A., P.S. Krasnov, and A.A. Titov, 1970. “On the emission of echolocation signals by the Azov Sea harbor porpoise,” Akusticheskii Zhurnal. 16(4): 521. Translated from Akusticheskii Zhurnal.

    Google Scholar 

  • Evans, W.E. and J.H. Prescott, 1962, “Observations of the sound capabilities of the bottlenose porpoise: a study of whistles and clicks.” Zoologica, 47 (3): 121.

    Google Scholar 

  • Evans, W.E., W.W. Sutherland, and R.G. Beil, 1964, “The directional characteristics of delphinid sounds,” in: Marine Bio-Acoustics, W.N. Tavolga, ed., Pergamon Press, New York.

    Google Scholar 

  • Fraser. F.C. and P.E. Purves, 1960, “Hearing in cetaceans. Evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans.’ Brit. Mus. (Nat. Hist.), Bull. Zool., 7 (1): 1.

    Google Scholar 

  • Green, R.F., S.H. Ridgway, and W.E. Evans, 1980, “Functional and descriptive anatomy of the bottlenosed dolphin nasolaryngeal system with special reference to the musculature associated with sound production,” in Animal Sonar Systems, J.F. Fish, ed., Plenum Press, New York.

    Google Scholar 

  • Gurevich, V.S., 1980, “A reconstructing technique for the nasal air sacs system in toothed whales,” in: Animal Sonar Systems. J.F. Fish, ed., Plenum Press, New York.

    Google Scholar 

  • Hosokawa, H. and T. Kamiya, 1965, “Sections of the dolphin’s head (Stenella coeruleoalba),” Sci. Repts. Whales Res. Inst., 19: 105.

    Google Scholar 

  • Kamminga, C. and H. Wiersma, 1981, “Investigations on Cetacean Sonar II. Acoustical Similarities and Differences in Odontocete Sonar Signals,” Aquatic Mammals. 8 (2): 41.

    Google Scholar 

  • Lawrence, B. and W.E. Schevill, 1956, “The functional anatomy of the delphinid nose,” Bull. Mus. Como. Zool. (Harvard), 114 (4): 103.

    Google Scholar 

  • Lawrence, B. and W.E. Schevill, 1965, “Gular musculature in delphinids.” Bull. Mus. Como. Zool. (Harvard), 133 (1): 1.

    Google Scholar 

  • Lilly, John C.. 1962, “Vocal behavior of the bottlenose dolphin,” Proc. of the Am. Phil. Soc., 106 (6): 520.

    Google Scholar 

  • Litchfield, C., C. Karol, and A.J. Greenberg, 1973, “Compositional topography of melon lipids in the Atlantic bottlenose dolphin (Tursiops truncatus): implications for echolocation,” Marine Biology, 23: 165.

    Article  CAS  Google Scholar 

  • Litchfield, C., R. Karol, M.E. Mullen, J.P. Dilger, and B. Luthi, 1979, “Physical factors influencing refraction of the echolocative sound beam in delphinid cetaceans,” Marine Biology, 52: 285.

    Article  Google Scholar 

  • Livingston, R.B., K.R. Wilson, B. Atkinson, G.L. Tribble, D.M. Rempel, J.S. MacGregor, R.E. Mills, T.C. Ege, and S.D. Pakan, 1976, “Quantitative cinemorphology of the human brain displayed by means of mobile computer graphics,” Trans. Amer. Neurol. Ass., 101: 99.

    PubMed  CAS  Google Scholar 

  • Mackay, R.S. and C. Liaw, 1981, “Dolphin vocalization mechanisms,” Science. 212 (8): 676.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, R.S., 1984, Medical imazes and displays: comparisons of nuclear magnetic resonance. ultrasound, X-rays, and other modalities, John Wiley & Sons, New York.

    Google Scholar 

  • Mead, J.G., 1975, “Anatomy of the external nasal passages and facial complex in the Delphinidae ( Mammalia: Cetacea),” Smithsonian Contribu. tions to Zoology. no. 207: 1.

    Article  Google Scholar 

  • Miller, R.L., 1959, “Nature of the Vocal Cord Wave,” J.’ Acoustic. Soc. Am., 31 (6): 667.

    Article  Google Scholar 

  • Mohl, B. and S. Andersen, 1973, “Echolocation: high frequency component in the click of the harbour porpoise (Phocoena phocoena L.),” J. Acoustic. Soc. Am., 54 (5): 1368.

    Article  CAS  Google Scholar 

  • Norris, K.S., 1964, “Some problems of echolocation in cetaceans,” in: Ma- rine Bio.Acoustics. W.N. Tavolga, ed., Pergamon Press, New York.

    Google Scholar 

  • Norris, K.S., 1968, “The evolution of acoustic mechanisms in odontocete cetaceans,” in: Evolution and Environment, E.T. Drake, ed., Yale University Press, New Haven.

    Google Scholar 

  • Norris, K.S., 1969, “The echolocation of marine mammals,” in: The Biology of Marine Mammals, H.T. Andersen, ed., Academic Press, New York.

    Google Scholar 

  • Norris, K.S., K.J. Dormer, J. Pegg, and G.T. Liese, 1971, “The mechanism of sound production and air recycling in porpoises: a preliminary report,” in: Proc. V III Conf. Biol. Sonar Diving Mammals, Menlo Park, California.

    Google Scholar 

  • Norris, K.S. and G.W. Harvey, 1974, “Sound transmission in the porpoise head,” J. Acoustic. Soc. Am., 56 (2): 659.

    Article  CAS  Google Scholar 

  • Norris, K.S. and B. M¢hl, 1983, “Can odontocetes debilitate prey with sound?,” The American Naturalist, 122 (1): 85.

    Article  Google Scholar 

  • Norris, K.S., B. Wursig, R.S. Wells, M. Wursig, S. M. Brownlee, C. Johnson, and J. Solow, 1985, “The behavior of the Hawaiian spinner dolphin, Stenella longirostris,” Administrative report to the National Marine Fisheries Service. vol. LJ.85.06C, Southwest Fisheries Center P.O. Box 271, La Jolla, CA 92038.

    Google Scholar 

  • Purves, P.E., 1966, “Anatomical and experimental observations on the cetacean sonar system,” in: Proc. Sym. Bionic Models Animal Sonar System, R.G. Busnel, ed., Frascati, Italy.

    Google Scholar 

  • Ridgway, S.H., D.A. Carder, R.F. Green, A.S. Gaunt, S.L.L. Gaunt, and W.E. Evans, 1980, “Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production.” in Animal Sonar Systems, J.F. Fish, ed., Plenum Press, New York.

    Google Scholar 

  • Rosenberg, A. E., 1971, “Effect of Glottal Pulse Shape on the Quality of Natural Vowels,” J. Acoustic. Soc. Am., 49 (2–2): 583.

    Article  Google Scholar 

  • Schenkkan, E.J., 1973, “On the comparative anatomy and function of the nasal tract in odontocetes (Mammalia, Cetacea),” Bijdragen tot de Dierkunde. 43 (2): 127.

    Google Scholar 

  • Schenkkan, E.J., 1977, “Notes on the nasal tract complex of the boutu, Inia geoffrensis (De Blainville, 1817)(Cetacea, Platanistidae),” Bijdragen tot de Dierkunde, 46 (2): 275.

    Google Scholar 

  • Varanasi, U. and D.C. Malins, 1971, “Unique lipids of the porpoise (Tursiops gilli): differences in triacylglycerols and wax esters of acoustic (mandibular and melon) and blubber tissues,” Biochem. Biophys. Acta., 231: 415.

    Article  PubMed  CAS  Google Scholar 

  • Varanasi. U. and D.C. Malins, 1972, “Triacylglycerols characteristic of porpoise acoustic tissues: molecular structure of diisovaleroylglycerides,” Science, 176: 926.

    Article  PubMed  CAS  Google Scholar 

  • Varanasi, U., D. Markey, and D. C. Malins, 1982, “Role of isovaleroyl lipids in channeling of sound in the porpoise melon,” Chemistry and Physics of Lipids, 31: 237.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Cranford, T.W. (1988). The Anatomy of Acoustic Structures in the Spinner Dolphin Forehead as Shown by X-Ray Computed Tomography and Computer Graphics. In: Nachtigall, P.E., Moore, P.W.B. (eds) Animal Sonar. NATO ASI Science, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7493-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7493-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7495-4

  • Online ISBN: 978-1-4684-7493-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics