Skip to main content

Pesticide Resistance in Arthropod Natural Enemies: Variability and Selection Responses

  • Chapter
Pesticide Resistance in Arthropods

Abstract

There are several controversial issues relating to the presence, absence, or degree of resistance to pesticides in arthropod natural enemies. Most of these issues have been extensively reviewed. Therefore, rather than review the reviews, this chapter will briefly review past results and present new information on variability and selection responses obtained from recent research on four natural enemy species. The new data may alter some traditional perceptions of problems associated with detecting naturally occurring pesticide resistances and the likelihood of inducing resistance in arthropod natural enemies through artificial selection, recombinant DNA (rDNA) techniques, or mutagenesis. As throughout this book, pesticide resistance is defined as a genetically induced change in the ability of a population to tolerate pesticides; no minimal level of change in tolerance need occur to be considered resistance by this definition, as long as the measured differences are repeatable and can be estimated in a statistically reliable manner (Chapter 2). The term tolerance will be used to describe the ability of an organism to survive a specific pesticide dose; it does not imply that a genetically determined change has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdelrahman, I.1973. Toxicity of malathion to the natural enemies of California red scale, Aonidiella aurantii (Mask.) (Hemiptera: Diaspididae). Australian J. Agric. Res. 24: 119–133.

    Article  CAS  Google Scholar 

  • Adams, C. H., and W. H. Cross. 1967. Insecticide resistance in Bracon mellitor, a parasite of the boll weevil. J. Econ. Entomol. 60: 1016–1020.

    CAS  Google Scholar 

  • Atallah, Y. H., and L. D. Newsom. 1966. Ecological and nutritional studies on Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). HI. The effect of DDT, toxaphene, and endrin on the reproductive and survival potentials. J. Econ. Entomol. 59: 1181–1187.

    CAS  Google Scholar 

  • Atkins, E. L., Jr., and L. D. Anderson. 1962. DDT resistance in honey bees. J. Econ. Entomol. 55: 791–792.

    CAS  Google Scholar 

  • Avella, M., D. Fournier, M. Pralavorio, and J. P. Berge. 1985. Selection pour la resistance a la deltamethrine d’une souche de Phytoseiulus persimilis Athias-Henriot. Agronomie 5: 177–180.

    Article  Google Scholar 

  • Bartlett, B. R. 1964. Integration of chemical and biological control, pp. 489–514. In P. DeBach (ed.), Biological control of insect pests and weeds. Reinhold, New York.

    Google Scholar 

  • Beckendorf, S. K., and M. A. Hoy. 1985. Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques, pp. 167–187. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.

    Google Scholar 

  • Bellows, T. S., Jr., and J. G. Morse. 1988. Residual toxicity following dilute or low volume applications of insecticides used for control of California red scale (Homoptera: Diaspididae) to four beneficial species in a citrus agroecosystem. J. Econ. Entomol. 81: 892–898.

    CAS  Google Scholar 

  • Bigler, F. 1984. Biological control by chrysopids: integration with pesticides, pp. 233–245. In M. Canard, Y. Semeria, and T. R. New (eds.), Biology of Chrysopidae. Junk, The Hague.

    Google Scholar 

  • Brown, A. W. A. 1977. Considerations of natural enemy susceptibility and developed resistance in the light of the general resistance problem. Z. Pflanzenkr. Pflanzensch. 84: 132–139.

    CAS  Google Scholar 

  • Buchi, R. 1981. Evidence that resistance against pyrethroids in aphids Myzus persicae and Phorodon hamuli is not correlated with high carboxylesterase activity. Z. Pflanzenkr. Pflanzensch. 88: 631–634.

    Google Scholar 

  • Croft, B. A. 1972. Resistant natural enemies in pest management systems. Span 15: 19–21.

    Google Scholar 

  • Croft, B. A. 1977. Resistance in arthropod predators and parasites, pp. 377–393. In D. L. Watson and A. W. A. Brown (eds.), Pesticide management and insecticide resistance. Academic, New York.

    Google Scholar 

  • Croft, B. A. 1990. Arthropod biological control agents and pesticides. Wiley, New York.

    Google Scholar 

  • Croft, B. A., and A. W. A. Brown. 1975. Responses of arthropod natural enemies to insecticides. Annu. Rev. Entomol. 20: 285–335.

    Article  PubMed  CAS  Google Scholar 

  • Croft, B. A., and L. R. Jeppson. 1970. Comparative studies on four strains of Typhlodromus occidentalis. II. Laboratory toxicity of ten compounds common to apple pest control. J. Econ. Entomol. 63: 1528–1531.

    CAS  Google Scholar 

  • Croft, B. A., and R. H. Meyer. 1973. Carbamate and organophosphonis resistance patterns in populations of Amblyseius fallacis. Environ. Entomol. 2: 691–695.

    CAS  Google Scholar 

  • Croft, B. A., and J. G. Morse. 1979. Recent advances on pesticide resistance in natural enemies. Entomophaga 24: 3–11.

    Article  Google Scholar 

  • Croft, B. A., and C. A. Mullin. 1984. Comparison of detoxification enzyme systems in Argyrotaenia citrana (Lepidoptera: Tortricidae) and the ectoparasite, Oncophanes americanus (Hymenoptera: Braconidae). Environ. Entomol. 13: 1330–1335.

    CAS  Google Scholar 

  • Croft, B. A., and Strickler. 1983. Natural enemy resistance to pesticides: documentation, characterization, theory and application, pp. 669–702. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Croft, B. A., and M. E. Whalon. 1982. Selective toxicity of pyrethroid insecticides to arthropod natural enemies and pests of agricultural crops. Entomophaga 27: 3–21.

    Article  CAS  Google Scholar 

  • Delorme, R., A. Angot, and D. Auge. 1984. Variations de sensibilité d’Encarsia formosa Gahan (Hym. Aphelinidae) soumis a des pressions de selection insecticide: approches biologique et biochimique. Agronomie 4: 305–309.

    Article  Google Scholar 

  • de Monies, G. J., J. G. McMurtry, and H. A. A. Denmark. 1986. A catalog of the mite family Phytoseiidae. Embrapa, Brasil.

    Google Scholar 

  • Hemer, J. L., B. Lighthart, and B. A. Croft. 1986. The effects of microbial pesticides on non-target, beneficial arthropods. Agric. Ecosyst. Environ. 16: 203–254.

    Article  Google Scholar 

  • Founder, D., M. Pralavorio, J. B. Berge, and A. Cuany. 1986. Pesticide resistance in Phytoseiidae, pp. 423–432. In W. Helle and M. W. Sabelis (eds.), Spider mites, their biology, natural enemies and control. Vol. IB. Elsevier, Amsterdam.

    Google Scholar 

  • Franz, J. M. 1974. Testing of side-effects of pesticides on beneficial arthropods in laboratory—a review (in German). Z. Pflanzenkr. Pflanzensch. 81: 141–174.

    Google Scholar 

  • Fraser, B. D., and R. van den Bosch. 1973. Biological control of the walnut aphid in California: the interrelationship of the aphid and its parasite. Environ. Entomol. 2: 561–568.

    Google Scholar 

  • Grafton-Cardwell, E. E., and M. A. Hoy. 1985a. Intraspecific variability in response to pesticides in the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Hilgardia 53(6): 1–32.

    Google Scholar 

  • Grafton-Cardwell, E. E., and M. A. Hoy. 1985b. Short-term effects of permethrin and fenvalerate on oviposition by Chrysoperla carnea (Neuroptera: Chrysopidae). J. Econ. Entomol. 78: 955–959.

    CAS  Google Scholar 

  • Grafton-Cardwell, E. E., and M. A. Hoy. 1986. Genetic improvement of common green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae): selection for carbaryl resistance. Environ. Entomol. 15: 1130–1136.

    Google Scholar 

  • Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190–199.

    Article  Google Scholar 

  • Hassan, S. A., et al. 1983. Results of the second joint pesticide testing programme by the IOBC/ WPRS Working Group “Pesticides and Beneficial Arthropods”. Z. Angew. Entomol. 95: 151–158.

    Article  Google Scholar 

  • Havron, A. 1983. Studies toward selection of Aphytis wasps for pesticide resistance. Ph.D. Thesis, Hebrew University of Jerusalem.

    Google Scholar 

  • Hoy, M. A. 1979. The potential for genetic improvement of predators for pest management programs, pp. 106–115. In M. A. Hoy and J. M. McKelvey, Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation Press, New York.

    Google Scholar 

  • Hoy, M. A. 1982a. Genetics and genetic improvement of the Phytoseiidae, pp. 72–89. In M. A. Hoy (ed.), Recent advances in knowledge of the Phytoseiidae. University of California Special Publication 3284, Division of Agricultural Sciences, Berkeley.

    Google Scholar 

  • Hoy, M. A. 1982b. Aerial dispersal and field efficacy of a genetically improved strain of the spider mite predator Metaseiidus occidentalis. Entomol. Exp. Appl. 32: 205–212.

    Article  Google Scholar 

  • Hoy, M. A. 1985a. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol. 30:345–370.

    Article  Google Scholar 

  • Hoy, M. A. 1985b. Almonds (California); integrated mite management for California almond orchards, pp. 299–310. In W. Helle and M. W. Sabelis (eds.), Spider mites, their biology, natural enemies and control. Vol. IB. Elsevier, Amsterdam.

    Google Scholar 

  • Hoy, M. A. 1987. Developing insecticide resistance in insect and mite predators and opportunities for gene transfer, pp. 125–138. In H. LeBaron, R. O. Mumma, R. C. Honeycutt, and J. H. Duesing (eds.), Biotechnology in Agricultural Chemistry. American Chemical Society Series No. 334, Washington, D.C.

    Chapter  Google Scholar 

  • Hoy, M. A., and F. E. Cave. 1988. Guthion-resistant strain of walnut aphid parasite. Calif. Agric. 42(4): 4–5.

    Google Scholar 

  • Hoy, M. A., and F. E. Cave. 1989. Toxicity of pesticides used on walnuts to a wild and azinphosmeth-yl-resistant strain of Trioxys pallidus (Hymenoptera: Aphidiidae). J. Econ. Entomol. 82: 1585–1592.

    CAS  Google Scholar 

  • Hoy, M. A., and J. Conley. 1987. Toxicity of pesticides to western predatory mite, Calif. Agric. 41(7–8), 12–14.

    Google Scholar 

  • Hoy, M. A., and N. F. Knop. 1979. Studies on pesticide resistance in the phytoseiid Metaseiulus occidentalis in California, pp. 89–94. In J. Rodriguez (ed.), Recent advances in acarology, Vol. I. Academic, New York.

    Google Scholar 

  • Hoy, M. A., and N. F. Knop. 1981. Selection for and genetic analysis of permethrin resistance in Metaseiulus occidentalis: genetic improvement of a biological control agent. Entomol. Exp. Appl. 30: 10–18.

    Article  Google Scholar 

  • Hoy, M. A., and Y. L. Ouyang. 1989. Selection of the western predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), for resistance to abamectin. J. Econ. Entomol. 82: 35–40.

    Google Scholar 

  • Hoy, M. A., and K. A. Standow. 1982. Inheritance of resistance to sulfur in the spider mite predator Metaseiulus occidentalis. Entomol. Exp. Appl. 31: 316–323.

    Article  Google Scholar 

  • Hoy, M. A., J. J. R. Groot, and H. E. van de Baan. 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Entomol. Exp. Appl. 37: 17–31.

    Article  Google Scholar 

  • Hoy, M. A., F. E. Cave, R. H. Beede, J. Grant, W. H. Krueger, W. H. Olson, K. M. Spollen, W. W. Barnett, and L. C. Hendricks. 1990. Release, dispersal, and recovery of a laboratoryselected strain of the walnut aphid parasite Trioxys pallidus (Hymenoptera: Aphidiidae) resistant to azinphosmethyl. J. Econ. Entomol. 83: 89–96.

    CAS  Google Scholar 

  • Hoyt, S. C. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J. Econ. Entomol. 62: 74–86.

    CAS  Google Scholar 

  • Huang, M. D., J. J. Xiong, and T. Y. Du. 1987. The selection for and genetical analysis of phosmet resistance in Amblyseius nicholsi. Acta Entomol. Sinica 30: 133–139.

    Google Scholar 

  • Huffaker, C. B. 1971. The ecology of pesticide interference with insect populations, pp. 92–104. In J. E. Swift (ed.), Agricultural chemicals—harmony or discord for food, people and the environment. University of California Division of Agricultural Sciences, Berkeley.

    Google Scholar 

  • Huffaker, C. B., and C. E. Kennett. 1953. Differential tolerance to parathion of two Typhlodromus predatory on cyclamen mite. J. Econ. Entomol. 46: 707–708.

    Google Scholar 

  • Hull, L. A., and E. H. Beers. 1985. Ecological selectivity: modifying chemical control practices to preserve natural enemies, pp. 103–121. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.

    Google Scholar 

  • Ishaaya, I., and J. E. Casida. 1981. Pyrethroid esterase(s) may contribute to natural pyrethroid tolerance of larvae of the common green lacewing (Chrysopa cornea). Environ. Entomol. 10:681–684.

    CAS  Google Scholar 

  • Kikkawa, H. 1964. Genetical studies on the resistance to parathion in Drosophila melanogaster. II. Induction of a resistance gene from its susceptible allele. Botyu-Kagaku 29: 37–42.

    Google Scholar 

  • Mansour, F. 1984. A malathion-tolerant strain of the spider Chiracanthium mildei and its response to chlorpyrifos. Phytoparasitica, 12(3–4): 163–166.

    Article  CAS  Google Scholar 

  • Markwick, N. P. 1986. Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites. Entomophaga 31:225–236.

    Article  CAS  Google Scholar 

  • Mullin, C. A., and B. A. Croft. 1985. An update on development of selective pesticides favoring arthropod natural enemies, pp. 123–150. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.

    Google Scholar 

  • Newsom, L. D., R. F. Smith, and W. H. Whitcomb. 1976. Selective pesticides and selective use of pesticides, pp. 565–591. In C. B. Huffaker and P. S. Messenger (eds.), Theory and practice of biological control. Academic Press, New York.

    Google Scholar 

  • Pielou, D. P., and R. E. Glasser. 1952. Selection for DDT resistance in a beneficial insect parasite. Science 115: 117–118.

    Article  PubMed  CAS  Google Scholar 

  • Plapp, F. W., Jr., and D. L. Bull. 1978. Toxicity and selectivity of some insecticides to Chrysopa cornea, a predator of the tobacco bud worm. Environ. Entomol. 7: 431–434.

    CAS  Google Scholar 

  • Pluthero, F. G., and F. H. Threlkeld. 1984. Mutations in Drosophila melanogaster affecting physiological and behavioral response to malathion. Can. Entomol. 116: 411–418.

    Article  Google Scholar 

  • Pree, D. J., D. E. Archibold, and R. K. Morrison. 1989. Resistance to insecticides in the common green lacewing Chrysoperla cornea (Neuroptera: Chrysopidae) in southern Ontario. J. Econ. Entomol. 82: 29–34.

    CAS  Google Scholar 

  • Rajakulendran, S. V., and F. W. Plapp Jr. 1982. Comparative toxicities of five synthetic pyrethroids to the tobacco budworm (Lepidoptera: Noctuidae), an ichneumonid parasite, Campoletis sonoren- sis, and a predator, Chrysopa cornea. J. Econ. Entomol. 75: 769–772.

    CAS  Google Scholar 

  • Ripper, W. E. 1956. Effect of pesticides on balance of arthropod populations. Annu. Rev. Entomol. 1: 403–438.

    Article  CAS  Google Scholar 

  • Robertson, J. G. 1957. Changes in resistance to DDT in Macrocentrus ancylivorus. Can. J. Zool. 35: 629–633.

    Article  Google Scholar 

  • Rosenheim, J. A., and M. A. Hoy. 1986. Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid. Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J. Econ. Entomol. 79: 1161–1173.

    CAS  Google Scholar 

  • Rosenheim, J. A., and M. A. Hoy. 1988. Genetic improvement of a parasitoid biological control agent: Artificial selection for insecticide resistance in Aphytis melinus (Hymenoptera: Aphelinidae). J. Econ. Entomol. 81: 1539–1550.

    CAS  Google Scholar 

  • Roush, R. T. 1979. Genetic improvement of parasitoids, pp. 97–105. In M. A. Hoy and J. J. McKelvey, Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation Press, New York.

    Google Scholar 

  • Roush, R. T., and M. A. Hoy. 1981. Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J. Econ. Entomol. 74: 138–141.

    Google Scholar 

  • Roush, R. T., and F. W. Plapp. 1982. Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J. Econ. Entomol. 75: 304–307.

    CAS  Google Scholar 

  • Schlinger, E. I., K. S. Hagen, and R. van den Bosch. 1960. Imported French parasite of walnut aphid established in California. Calif. Agric. 14(11): 3–4.

    Google Scholar 

  • Schoonees, J., and J. H. Giliomee. 1982. The toxicity of methidathion to parasitoids of red scale, Aonidiella aurantii (Hemiptera: Diaspididae). J. Entomol. Soc. South Africa 45: 261–273.

    Google Scholar 

  • Shour, M. H., and L. A. Crowder. 1980. Effects of pyrethroid insecticides on the common green lacewing. J. Econ. Entomol. 73: 306–309.

    CAS  Google Scholar 

  • Sibbett, G. S., L. Bettiga, and M. Bailey. 1981. Impact of summer infestation of walnut aphid on quality. Sun-Diamond Grower June-July: 8.

    Google Scholar 

  • Smirle, M. J., and M. L. Winston. 1987. Intercolony variation in pesticide detoxification by the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 80: 5–8.

    CAS  Google Scholar 

  • Stern, V. M., R. F. Smith, R. van den Bosch, and K. S. Hagen. 1959. The integration of chemical and biological control of the spotted alfalfa aphid. Hilgardia 29: 81–101.

    CAS  Google Scholar 

  • Strawn, A. J. 1978. Differences in response to four organophosphates in the laboratory of strains of Aphytis melinus and Compendia bifasciata from citrus groves with different pesticide histories, M.S. thesis, University of California, Riverside.

    Google Scholar 

  • Strickler, K. A., and B. A. Croft. 1982. Selection for permethrin resistance in the predatory mite, Amblyseius fallacis Garman (Acarina: Phytoseiidae). Entomol. Exp. Appl. 31: 339–345.

    Article  CAS  Google Scholar 

  • Sun, Y. P. 1966. Correlation between laboratory and field data on testing insecticides. J. Econ. Entomol. 59: 1131–1134.

    CAS  Google Scholar 

  • Tabashnik, B. E., and B. A. Croft. 1985. Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga 30: 37–49.

    Article  Google Scholar 

  • Tahori, A. S., Z. Sobel, and M. Soller. 1969. Variability in insecticide tolerance of eighteen honeybee colonies. Entomol. Exp. Appl., 12: 85–98.

    Article  Google Scholar 

  • Theiling, K. M. 1987. SELCTV: a database management system on the effects of pesticides on arthropod natural enemies, M.S. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Theiling, K. M., and B. A. Croft. 1988. Pesticide effects on arthropod natural enemies: a database summary. Agric. Ecosyst. Environ. 21: 191–218.

    Article  CAS  Google Scholar 

  • Tucker, K. W. 1980. Tolerance to carbaryl in honey bees increased by selection. Am. Bee J. January: 36–46.

    Google Scholar 

  • van den Bosch, R., and V. M. Stern. 1962. The integration of chemical and biological control of arthropod pests, Annu. Rev. Entomol. 7:367–386.

    Article  Google Scholar 

  • van den Bosch, R., E. I. Schlinger, and K. S. Hagen. 1962. Initial field observations in Californiaon Trioxys pallidus (Haliday), a recently introduced parasite of the walnut aphid. J. Econ. Entomol. 55:857–862.

    Google Scholar 

  • van den Bosch, R., R. Horn, P. Matteson, B. D. Frazer, P. S. Messenger, and C. S. Davis. 1979. Biological control of the walnut aphid in California: impact of the parasite, Trioxys pallidus. Hilgardia 47: 1–13.

    Google Scholar 

  • Wilson, T. G., and J. Fabian. 1987. Selection of methoprene-resistant mutants of Drosophila melanogaster, pp. 179–188. In J. Law (ed.), Molecular Entomology, UCLA Symposium on Molecular and Cell Biology, new series, no. 49.

    Google Scholar 

Download references

Authors

Editor information

Richard T. Roush Bruce E. Tabashnik

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Hoy, M.A. (1990). Pesticide Resistance in Arthropod Natural Enemies: Variability and Selection Responses. In: Roush, R.T., Tabashnik, B.E. (eds) Pesticide Resistance in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6429-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6429-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6431-3

  • Online ISBN: 978-1-4684-6429-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics