Skip to main content

Role of Second Messengers in Early Differentiation of Gonads and Sex Ducts

  • Chapter
Growth Factors and the Ovary

Abstract

The phenotypic sex develops as a result of gonadal differentiation, which again usually reflects the genetic sex. In spite of numerous studies, the mechanisms which control gonadal sex differentiation are still not clear. Neither sex steroids nor gonadotropins direct the process (1). Specific gene products of the Y-chromosome have been proposed to control testicular differentiation, e.g., the HY-antigen (histocompatability Y-antigen) (2) and the TDF (testis determining factor) (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev 1986; 66:71–117.

    PubMed  CAS  Google Scholar 

  2. Wachtel SS. H-Y antigen in gonadal differentiation. In: Austin CR, Edwards RG, eds. Mechanisms of sex differentiation in animals and man. London, New York: Academic Press, 1981:255–99.

    Google Scholar 

  3. Page DC, Mosher R, Simpson EM, et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 1987; 51:1091–1104.

    Article  PubMed  CAS  Google Scholar 

  4. Byskov AG. Regulation of meiosis in mammals. Ann Biol Anim Biochem Biophys 1979;19:1251–61.

    Article  Google Scholar 

  5. Fajer AB, Schneider J, McCall D, Ances IG, Polakis SE. The induction of meiosis by ovaries of newborn hamsters and its relation to the action of the extraovarian structures in the mesovarium (rete ovarii). Ann Biol Anim Biochem Biophys 1979; 19:1273–8.

    Article  Google Scholar 

  6. Westergaard LG. Intrafollicular factors regulating human ovarian follicular development and oocyte maturation. Dan Med Bull 1988 (in press).

    Google Scholar 

  7. Taketo T, Thau RB, Adeyemo O, Koide SS. Influence of adenosine 3’:5’-cyclic monophosphate analogues on testicular organization of fetal mouse gonads in vitro. Biol Reprod 1984; 30:189–98.

    Article  PubMed  CAS  Google Scholar 

  8. Magre S, Agelopoulou R, Jost A. Action du serum de veau sur la differenciation in vitro on le maintien des cordon seminiferes du testicule du faetus du rat. C R Acad Sci (Paris) 1981; 292:85–9.

    CAS  Google Scholar 

  9. Agelopoulou R, Magre S, Patsavoudi E, Jost A. Initial phases of the rat testis differentiation in vitro. J Embryol Exp Morphol 1984; 83:15–31.

    PubMed  CAS  Google Scholar 

  10. Byskov AG, Fenger M, Hansen JL, Husum I, Bagger P. Second messengers in control of onset of meiosis in fetal mice. 1988 (submitted).

    Google Scholar 

  11. Daly JW. Forskolin, adenylate cyclase, and cell physiology: an overview. In: Greengard P, ed. Advances in cyclic nucleotide and protein phosphorylation research. New York: Raven Press, 1984:81–9.

    Google Scholar 

  12. Joso N, Picard J-Y. Anti-Mullerian hormone. Physiol Rev 1986; 66:1038–90.

    Google Scholar 

  13. Drummond AH, Joels LA, Hughes PJ. The interaction of lithium ions with lipid signalling systems. Biochem Soc Trans 1987; 15:32–5.

    PubMed  CAS  Google Scholar 

  14. Mork A, Geisler A. Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain. Pharmacol Toxicol 1987; 60:241–8.

    Article  PubMed  CAS  Google Scholar 

  15. Tomooka Y, Imagawa W, Nandi S, Bern HA. Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture. J Cell Physiol 1983; 117:290–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Byskov, A.G., Tinggaard, H., Andersen, C.Y. (1989). Role of Second Messengers in Early Differentiation of Gonads and Sex Ducts. In: Hirshfield, A.N. (eds) Growth Factors and the Ovary. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5688-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5688-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5690-5

  • Online ISBN: 978-1-4684-5688-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics