Skip to main content

Protein Dynamics: Fluorescence Lifetime Distributions

  • Conference paper
Fluorescent Biomolecules

Abstract

It is now well established that proteins in their native conformation can exist in a large number of subconformations slightly different one from the other (Lakowicz & Weber, 1973; Austin et al., 1975; Careri et al., 1975, 1979; Karplus & McCammon, 1983). Subconformations originate from small structural fluctuations around the main conformation. The protein structure is very flexible and it allows rotations around the phi and psi angles of the polypeptide chain and around the C-alpha carbon on the side chain. The stabilization of one particular native structure depends on a large number of interactions which are affected by solvent, ions of the medium and chemico-physical parameters. Some parts of the protein structure are more stable than others due to a more favorable interaction between the amino acid residues and they form structural domains. Frequently, these domains are associated with secondary structural elements such as alpha helical segments or beta sheets. The connections or loops between domains are generally more flexible. Within a domain, a side chain exposed to the solvent can have large rotational freedom and fast motions can result with rates comparable to the rates of motion of the residue in the solvent. Alternatively, a side chain at the interface between two distinct domains can move only if the domains separate enough to allow the side chain to rotate. The resultant motion of this side chain is then modulated by the relatively slow motion of the two domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alcala, J. R., Gratton, E., and Jameson, D. M., 1985, Multifrequency Phase Fluorometer Using the Harmonic Content of a Mode-Locked Laser, Anal. Instrum., 14:225.

    Article  CAS  Google Scholar 

  • Alcala, J. R., Gratton, E., and Prendergast, F. J., 1987a, Resolvability of Fluorescence Lifetime Distributions, Biophys. J., 51:587.

    Article  PubMed  CAS  Google Scholar 

  • Alcala, J. R., Gratton, E., and Prendergast, F. J., 1987b, Fluorescence Lifetime Distributions in Proteins, Biophys. J., 51:597–604.

    Article  PubMed  CAS  Google Scholar 

  • Alcala, J. R., Gratton, E., and Prendergast, F. J., 1987c, Interpretation of Fluorescence Decay in Proteins Using Continuous Lifetime Distributions, Biophys. J., 51:925.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, A., Berendzen, J., Bowne, S. F., Frauenfelder, H., Iben, I.E.T., Sauke, T. B., Shyamsunder, E., and Young, R. D., 1985, Protein States and Proteinquakes, Proc. Natl. Acad. Sci. USA, 82:5000.

    Article  PubMed  CAS  Google Scholar 

  • Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., and Gunsalus, I. C, 1975, Dynamics of Ligand Binding to Myoglobin, Biochemistry, 14:5355.

    Article  PubMed  CAS  Google Scholar 

  • Beechem, J. M., and Brand, L., 1985, Time Resolved Fluorescence Decay in Proteins, Ann. Rev. Biochem., 54:43.

    Article  PubMed  CAS  Google Scholar 

  • Careri, G., Fasella, P., and Gratton, E., 1975, Statistical Time Events in Enzymes: A Physical Assessment, CRC Crit. Rev. Biochem., 3:141.

    Article  PubMed  CAS  Google Scholar 

  • Careri, G., Fasella, P., and Gratton, E., 1979), Enzyme Dynamics: The Statistical Physics Approach, Ann. Rev. Biophys. Bioeng., 8:69.

    Article  CAS  Google Scholar 

  • Caceri, M. S., and Cacheris, W. P., 1984, Fitting Curves to Data, The Simplex Algorithm is the Answer, Byte, May, 340.

    Google Scholar 

  • Chen, R. F., 1976, The Effect of Metal Cations on Intrinsic Protein Fluorescence, in: “Biochemical Fluorescence”, Vol. 2, R. F. Chen and H. Hedelhoch, eds., Marcel Dekker, NY.

    Google Scholar 

  • Creed, D., 1984a, The Photophysics and Photochemistry of the Near-UV Absorbing Amino Acids — I. Tryptophan and its Simple Derivatives, Photochem. Photobiol., 39:537.

    Article  CAS  Google Scholar 

  • Creed, D., 1984b, The Photophysics and Photochemistry of the Near-UV Absorbing Amino Acids — II. Tyrosine and its Simple Derivatives, Photochem. Photobiol., 39:563.

    Article  CAS  Google Scholar 

  • Fraunfelder, H., Petsko, G. A., and Tsernoglou, D., 1979, Temperature Dependent X-ray Temperature Diffraction as a Probe of Protein Structural Dynamics, Nature (London), 280:558.

    Article  Google Scholar 

  • Fraunfelder, H., Gratton, E., 1985, Protein Dynamics and Hydration, in: “Biomembranes, Protons and Water: Structure and Translocation”, Methods in Enzymology, 127:471.

    Google Scholar 

  • Gratton, E., and Limkeman, M., 1983, A Continuously Variable Frequency Cross-correlation Phase Fluorometer with Picosecond Resolution, Biophys. J., 44:315.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, E., Alcala, J. R., and Prendergast, F. G., 1986, Fluorescence Lifetime Distributions of Single Tryptophan Proteins: A Protein Dynamics Approach, in: “Progress and Challenges in Natural and Synthetic Polymer Research”, C. Kawabata and A. Bishop, eds., Ohmshu Press, Tokyo, Japan.

    Google Scholar 

  • Haydock, C, and Prendergast, F. G., 1986, A Model of Protein Fluorescence Incorporating Chromophore Interactions and Dynamics, Biophys. J., 49:62a.

    Google Scholar 

  • Ichiye, T., and Karplus, M., 1983, Fluorescence Depolarization of Tryptophan Residues in Proteins: A Molecular Dynamics Study, Biochemistry, 22:2884.

    Article  PubMed  CAS  Google Scholar 

  • James, D. R., and Ware, W. R., 1985, A Fallacy in the Interpretation of Fluorescence Decay Parameters, Chem. Phys. Lett., 120:455.

    Article  CAS  Google Scholar 

  • James, D. R., Liu, Y. S., De Mayo, P., and Ware, E. R., 1985, Distribution of Fluorescence Lifetimes: Consequences for the Photophysics of Molecules Adsorbed on Surfaces, Chem. Phys. Lett., 120:460.

    Article  CAS  Google Scholar 

  • Karplus, M., and McCammon, J. A., 1983, Dynamics of Proteins, Elements and Function, Ann. Rev. Biochem., 53:263.

    Article  Google Scholar 

  • Lakowicz, J. R., and Weber, G., 1973, Quenching of Protein Fluorescence by Oxygen. Detection of Structural Fluctuations in Proteins on the Nanosecond Time Scale, Biochemistry, 12:4171.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and Cherek, H., 1980, Dipolar Relaxation in Proteins on Nanosecond Timescale Observed by Wavelength-Resolved Phase Fluorometry of Tryptophan Fluorescence, J. Biol. Chem., 831.

    Google Scholar 

  • Lakowicz, J. R., Laczko, G., Cherek, H., Gratton, E., and Limkeman, M., 1984, Analysis of the Fluorescence Decay Kinetics from Variable-Frequency Phase Shift and Modulation Data, Biophys. J., 46:463.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, M., and Prendergast, F. G., 1985, Correlation of Protein Structure and Luminescence: Use of Molecular Electrostatic Potentials, Biochemistry, 24:3384.

    Google Scholar 

  • Longworth, J. W., 1971, Luminescence of Polypeptides and Proteins, in: “Excited States of Proteins and Nucleic Acids”, R. F. Steiner and I. Weinryb, eds., Plenum Press, NY.

    Google Scholar 

  • Lumry, R., and Hershberger, M., 1978, Status of Indole Photochemistry with Special Reference to Biological Applications, Photochem. Photobiol., 27:819.

    Article  CAS  Google Scholar 

  • Macgregor, R. B., and Weber, G., 1981, Fluorophores in Polar Media. Spectral Effects of the Langevin Distribution of Electrostatic Interactions, Ann. N. Y. Acad. Sci., 366:190.

    Article  Google Scholar 

  • Valeur, B., and Weber, G., 1977, Resolution of the Fluorescence Excitation Spectrum of Indole into the lLa and lLb, Excitation Bands, Photochem. Photobiol., 25:441.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1981, Resolution of the Fluorescence Lifetime in a Heterogeneous System by Phase and Modulation Measurements, J. Phys. Chem., 85:949.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Gratton, E., Alcala, J.R., Prendergast, F.G. (1989). Protein Dynamics: Fluorescence Lifetime Distributions. In: Jameson, D.M., Reinhart, G.D. (eds) Fluorescent Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5619-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5619-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5621-9

  • Online ISBN: 978-1-4684-5619-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics