Skip to main content

Neurochemical Sequelae of Brain Damage and Their Role in Functional Disturbances

  • Chapter
Mechanisms of Secondary Brain Damage

Part of the book series: NATO ASI Series ((NSSA,volume 115))

Abstract

Various types of injury have been shown to produce a variety of chemical changes in brain which are thought to underly functional disturbances resulting from the particular insult. Some of the systems known to be affected in injured brain are summarized in Figure 1, but the list is by no means exhaustive. The exact mechanisms by which the chemical perturbations are related to functional disturbances are not understood in most cases and it is often difficult to distinguish between the cause and the effect in this relationship. One problem has been the difficulty in assessing neurological function in animals since normalization of neurochemical disturbances in brain cannot always be equated with normally functioning central nervous system and the available methods are not necessarily applicable in the particular experimental situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akerman KEO, and Nicholls DG, Ca++ transport and the regulation of transmitter release in isolated nerve endings, Trends Biol Sci 8: 63 (1983).

    Article  Google Scholar 

  • Anderson GM, Young JG, and Batter DK, Determination of indoles and catechols in rat brain and pineal using liquid chromatography with fluorometric and amperometric detection, J Chromatogr 223: 315 (1981).

    Article  CAS  Google Scholar 

  • Bareggi SR, Porta M, Selenati A, Assael BM, Calderini G, Collice M, Rossandra M, and Morselli PL, Homovanillic acid and 5-hydroxyindoleacetic acid in the CSF of patients after severe head injury, Eur Neurol 13: 528 (1975).

    Article  CAS  Google Scholar 

  • Bazan NG, Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock, Adv Exptl Med Biol 72: 317 (1976).

    CAS  Google Scholar 

  • Beaudet A, and Descarries L, Quantitative data on serotonin nerve terminals in adult rat neocortex, Brain Res 111: 301 (1976).

    Article  CAS  Google Scholar 

  • Beaudet A, and Descarries L, The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic axon terminals, Neurosci 3: 851 (1978).

    Article  CAS  Google Scholar 

  • Bolton TB, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol Rev 59: 606 (1979).

    CAS  Google Scholar 

  • Cervos-Navarro J, and Ferszt R, “Brain Edema: Pathology, Diagnosis and Therapy”, Raven Press, New York (1980).

    Google Scholar 

  • Chan PH, Longar S, and Fishman RA, Phospholipid degradation and edema development in cold-injured rat brain, Brain Res 277: 329 (1983).

    Article  CAS  Google Scholar 

  • Cooper JR, Bloom FE, and Roth RH, “The Biochemical Basis of Neuro-pharmacology”, Oxford University Press, New York (1978).

    Google Scholar 

  • Coyle JT, and Snyder SH, Catecholamines, in: “Basic neurochemistry”, Siegel GJ, Albers RW, Agranoff BW, and Katzman R, eds., Little Brown Co., Boston (1981).

    Google Scholar 

  • Del Maestro RF, An approach to free radicals in medicine and biology, Acta Physiol Scand 492: 153 (1980).

    Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, and Seligman ML, The free radical pathology and the microcirculation in the major central nervous system disorders, Acta Physiol Scand 492: 91 (1980).

    CAS  Google Scholar 

  • Descarries L, Watkins KC, and Lapierre Y, Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis, Brain Res 133: 197 (1977).

    Article  CAS  Google Scholar 

  • Drapeau P, and Blaustein MP, Initial release of (3 H) dopamine from rat striatal synaptosomes: Correlation with calcium entry, J Neurosci 3: 703 (1983).

    CAS  Google Scholar 

  • Ehlert FJ, 3ltoga E, Roeske WR, and Yamamura HI, The interaction of (H) nitrendipine with receptors for calcium antagonists in the cerebral cortex and heart of rats, Biochem Biophys Res Commun 104:937 (1982).

    Google Scholar 

  • Emson PC, and Lindvall O, Distribution of putative neurotransmitters in the neocortex, Neurosci 4: 1 (1979).

    Article  CAS  Google Scholar 

  • Farber JL, Chien KR, and Mittnacht S, The pathogenesis of irreversible cell injury in ischemia, Am J Pathol 102: 271 (1981).

    CAS  Google Scholar 

  • Fenske A, Sinterhauf K, and Reulen HJ, The role of monoamines in the development of cold-induced edema, in: “Dynamics of brain edema”, Pappius HM, and Feindel W, eds., Springer-Verlag, Heidelberg (1976).

    Google Scholar 

  • Ferron A, Descarries L, and Reader TA, Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletion, Brain Res 231: 93 (1982).

    Article  CAS  Google Scholar 

  • Flaim SF, and Zelis R, Effects of diltiazem on total cardiac output distribution in conscious rats, J Pharmacol Exptl Therap 222: 359 (1982).

    CAS  Google Scholar 

  • Fleckenstein A, Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle, Ann Rev Pharmacol Toxicol 17: 149 (1977).

    Article  CAS  Google Scholar 

  • Flower R, Steroidal antiinflammatory drugs as inhibitors of phospholipase A2, Adv Prost Thromb Res 3: 105 (1978).

    CAS  Google Scholar 

  • Foote S, Bloom FE, and Aston-Jones G, Nucleus locus coeruleus: New evidence of anatomical and physiological specificity, Physiol Rev 63: 844 (1983).

    CAS  Google Scholar 

  • Gardiner M, Nilsson B, Rehncrona S, and Siesjö BK, Free fatty acids in the rat brain in moderate and severe hypoxia, J Neurochem 36: 1500 (1981).

    Article  CAS  Google Scholar 

  • Godfraind. T, Albertini A, and Paoletti R, “Calcium modulators”, Elsevier

    Google Scholar 

  • Biomedical Press, Amsterdam-New York-Oxford (1982). Gorman RR, Modulation of human platelet function by prostacyclin and thromboxane A2, Fed Proc 38: 83 (1979).

    Google Scholar 

  • Hagiwara S, and Byerly 2, Calcium channel, Ann Rev Neurosci 4:69 (1981).

    Google Scholar 

  • Harris RJ, Branston NM, Symon L, Bayhan M, and Watson A, The effects of a calcium antagonist, nimodipine, upon physiological response of the cerebral vasculature and its possible influence upon focal cerebral ischaemia, Stroke 13: 759 (1982).

    Article  CAS  Google Scholar 

  • Hayes RL, Pechura CM, Katayama Y, Povlishock JT, Giebel ML, and Becker DP, Activation of pontine cholinergic sites implicated in unconsciousness following cerebral concussion in the cat, Science 223: 301 (1984).

    Article  CAS  Google Scholar 

  • Hedqvist P, Basic mechanisms of prostaglandin action on autonomic neurotransmission, Ann Rev Pharmacol Toxicol 17: 259 (1977).

    Article  CAS  Google Scholar 

  • Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, and Axelrod J, A phospholipase A2, inhibitory protein in rabbit neutrophils in-duced by glucocorticoids, Proc Natl Acad Sci USA 77: 2533 (1980).

    Article  CAS  Google Scholar 

  • Hogestatt ED, Andersson KE, and Edvinsson L, Effects of nifedipine on potassium-induced contraction and noradrenaline release in cerebral and extracranial arteries from rabbit, Acta Physiol Scand 114: 283 (1982).

    Article  CAS  Google Scholar 

  • Hong SL, and Levine L, Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids, Proc Natl Acad Sci USA, 73: 1730 (1976).

    Article  CAS  Google Scholar 

  • Katzman R, and Pappius HM, “Brain electrolytes and fluid metabolism”, Williams & Wilkins Co., Baltimore (1973).

    Google Scholar 

  • Kelly RB, Deutsch JW, Carlson SS, and Wagner JA, Biochemistry of neurotransmitter release, Ann Rev Neurosci 2: 399 (1979).

    Article  CAS  Google Scholar 

  • Kuwashima J, Fujitani B, Nakamura K, Kadokawa T, Yoshida K, and Shimizu M, Biochemical changes in unilateral brain injury in the rat: a possible role of free fatty acid accumulation, Brain Res 110: 547 (1976).

    Article  CAS  Google Scholar 

  • Lane JD, and Aprison MH, Calcium-dependent release of endogenous serotonin, dopamine and norepinephrine from nerve endings, Life Sci 20: 665 (1977).

    Article  CAS  Google Scholar 

  • Levitt P, and Moore RY, Noradrenaline neuron innervation of the neo-cortex in the rat, Brain Res 139: 219 (1978).

    Article  CAS  Google Scholar 

  • Lidov HGW, Grzanna R, and Molliver ME, The serotonin innervation of the cerebral cortex in the rat - an immunohistochemical analysis, Neurosci 5: 207 (1980).

    Article  CAS  Google Scholar 

  • Majerus PW, Arachidonate metabolism in vascular disorders, J Clin Invest 72: 1521 (1983).

    Article  CAS  Google Scholar 

  • McEwen BS, Davis PG, Parsons B, and Pfaff DW, The brain as a target for steroid hormone action, Ann Rev Neurosci 2: 65 (1979).

    Article  CAS  Google Scholar 

  • Mitamura JA, Seligman ML, Solomon JJ, Flamm ES, Demopoulos HB, and Ransohoff J, Loss of essential membrane lipids and ascorbic acid from rat brain following cryogenic injury and protection by methylprednisolone, Neurol Res 3: 329 (1981).

    CAS  Google Scholar 

  • Moises HC, Woodward DJ, Hoffer BJ, and Freedman R, Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis, Exptl Neurol 64: 493 (1979).

    Article  CAS  Google Scholar 

  • Moore RY, and Bloom FE, Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems, Ann Rev Neurosci 2: 113 (1979).

    Article  CAS  Google Scholar 

  • Morrison JH, and Magistretti PJ, Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization, Trends Neurosci 6: 146 (1983).

    Article  CAS  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R, and Coyle JT, The intracortical trajectory of the coeruleo-cortical projection in the rat: A tangentially organized cortical afferent, Neurosci 6: 139 (1981).

    Article  CAS  Google Scholar 

  • Murphy KMM,3 Gould RJ, and Snyder SH, Autoradiographic visualization of (H) nitrendipine binding sites in rat brain: localization to synaptic zones, Eur J Pharmacol 81:517 (1982).

    Google Scholar 

  • Nelson DH, Corticosteroid-induced changes in phospholipid membranes as mediators of their action, Endocrin Rev 1: 180 (1980).

    Article  CAS  Google Scholar 

  • Pappius HM, Local cerebral glucose utilization in thermally traumatized rat brain, Ann Neurol 9: 484 (1981).

    Article  CAS  Google Scholar 

  • Pappius HM, Dexamethasone and local cerebral glucose utilization in freeze-traumatized rat brain, Ann Neurol 12: 157 (1982).

    Article  CAS  Google Scholar 

  • Pappius HM, and Feindel W, “Dynamics of brain edema”, Springer-Verlag, Heidelberg (1976).

    Book  Google Scholar 

  • Pappius HM, and Wolfe LS, Some further studies on vasogenic edema, in: “Dynamics of brain edema”, Pappius HM and Feindel W, eds., Springer-Verlag, Heidelberg (1976).

    Chapter  Google Scholar 

  • Pappius HM, and Wolfe LS, Functional disturbances in brain following injury: search for underlying mechanisms, Neurochem Res 8: 61 (1983a).

    Article  Google Scholar 

  • Pappius HM, and Wolfe LS, Involvement of serotonin and catecholamines in functional depression of traumatized brain, J Cereb Blood Flow Metabol 3 (Suppl. 1): S226 (1983b).

    Google Scholar 

  • Pappius HM, and Wolfe LS, Effects of indomethacin and ibuprofen on cerebral metabolism and blood flow in traumatized brain, J Cereb Blood Flow Metabol 3: 448 (1983c).

    Article  CAS  Google Scholar 

  • Parent A, Descarries L, and Beaudet A, Organization of ascending serotonin systems in the adult rat brain. Adioautographic study after intraventricular administration of (H)5-hydroxytryptamine, Neurosci 6: 115 (1981).

    Google Scholar 

  • Ramwell P, Prostaglandin synthetase inhibitors: New clinical applications, in: “Prostaglandins and related lipids”, Ramwell P, ed., AR Liss, New York (1980).

    Google Scholar 

  • Robinson RG, and Bloom FE, Pharmacological treatment following experimental cerebral infarction: Implications for understanding psychological symptoms of human stroke, Biol Psychiat 12: 669 (1977).

    CAS  Google Scholar 

  • Rubin RP, The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol Rev 22: 389 (1970).

    CAS  Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, and Scjloloff L, Measurement of local cerebral blood flow with iodo (C)antipyrine, Am J Physiol 234: H59 (1978).

    CAS  Google Scholar 

  • Schanne FAX, Kane AG, Young EE, and Farber JL, Calcium dependence of toxic cell death: A final common pathway, Science 206: 700 (1979).

    Article  CAS  Google Scholar 

  • Siesjö BK, Cell damage in the brain: A speculative synthesis, J Cereb Blood Flow Metabol 1: 155 (1981).

    Article  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MHi4Patlak CS, Pettigrew KD, Sakurada O, and Shinohara M, The (C)-deoxyglucose method for measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J Neurochem 28: 897 (1977).

    Article  CAS  Google Scholar 

  • Sokoloff L, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J Cereb Blood Flow Metabol 1: 7 (1981).

    Article  CAS  Google Scholar 

  • Takahashi M, and Ogura A, Dihydropyridines as potent calcium channel blockers in neuronal cells, FEBS Letters 152: 191 (1983).

    Article  CAS  Google Scholar 

  • Toll L, Calcium antagonists. High affinity binding and inhibition of calcium transport in a clonal cell line, J Biol Chem 257: 13189 (1982).

    CAS  Google Scholar 

  • Tornheim PA, and McLaurin RL, Effect of dexamethasone on cerebral edema from cranial impact in the cat, J Neurosurg 48: 220 (1978).

    Article  CAS  Google Scholar 

  • Vecht CJ, Van Woerkom TCAM, Teelken AW, and Minderhoud JM, Homovanillic acid and 5-hydroxyindoleacetic acid cerebrospinal fluid levels, Arch Neurol 32: 792 (1975).

    Article  CAS  Google Scholar 

  • Whorton AR, Willis CE, Kent RS, and Young SL, The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells, Lipids 19: 17 (1984).

    Article  CAS  Google Scholar 

  • Wolfe LS, Eicosanoids: Prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids, J Neurochem 38: 1 (1982).

    Article  CAS  Google Scholar 

  • Wolfe LS, and Coceani F, The role of prostaglandins in the central nervous system, Ann Rev Physiol 41: 669 (1979).

    Article  CAS  Google Scholar 

  • Wolfe LS, Ng Ying Kin NMK, and Spatz M, Metabolites of arachidonic acid after calcium ionophore stimulation of cultured cerebral capillary endothelial cells and brain tissue: Identification of lipoxygenase products, J Neurochem 41: 540C (1983).

    Google Scholar 

  • Wolfe LS, Rostworowski K, and Pappius HM, The endogenous biosynthesis of prostaglandins by brain tissue in vitro, Can J Biochem 54: 629 (1976).

    Article  CAS  Google Scholar 

  • Yarbrough GG, Lake N, and Phillis JW, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurons, Brain Res 67: 77 (1974).

    Article  CAS  Google Scholar 

  • Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Schimazaki H, and Ueta N, Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury, J Neurosurg 53: 323 (1980).

    Article  CAS  Google Scholar 

  • Yoshida S, Abe K, Busto R, Watson BD, Kogure K, and Ginsberg MD, Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain, Brain Res 245: 307 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Pappius, H.M., Wolfe, L.S. (1986). Neurochemical Sequelae of Brain Damage and Their Role in Functional Disturbances. In: Baethmann, A., Go, K.G., Unterberg, A. (eds) Mechanisms of Secondary Brain Damage. NATO ASI Series, vol 115. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5203-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5203-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5205-1

  • Online ISBN: 978-1-4684-5203-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics