Skip to main content

Calcium Sensitivity is Modified by Contraction

  • Chapter
Contractile Mechanisms in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 37))

Abstract

This paper summarizes three lines of experimental evidence showing that crossbridge interaction affects calcium sensitivity and probably also affects calcium binding. Evidence is presented that this is a true hysteresis, not just a slow approach to equilibrium.

  1. 1)

    In barnacle single muscle fibers injected with aequorin to monitor Intracellular Ca, a long duration stimulus under voltage clamp conditions can produce a long duration calcium transient and force record which both approach steady levels. However, if the stimulus is briefly elevated to transiently produce a higher force early in the contraction, the same steady state Ca level can eventually maintain a higher steady force. Thus Ca sensitivity is modified.

  2. 2)

    In “skinned” barnacle muscle activated by Ca in the presence of buffered Ca, MgATP, and pH, force was measured in split, detergent treated fiber while it was transferred consecutively between solutions which were relaxing, submaximal contracting, maximal contracting, the same submaximal contracting, and finally relaxing. The submaximal contracting solution produced more force when stepping down in Ca concentration (as in relaxation) than when stepping up. Extending the time in the initial submaximal contracting solution did not result in more force. Thus, the force-pCa relationship shows marked hysteresis. The same phenomenon was seen in frog and mammalian muscle fibers. These experiments confirm the findings that contraction modifies Ca sensitivity.

  3. 3)

    In the barnacle single muscle fiber preparation (under both voltage clamp and controlled length conditions), phasic (400 msec) depolarization leads to a calcium transient and a twitch contraction. Releasing the muscle to allow it to shorten rapidly during the declining phase of the calcium transient causes the force to fall and leads to extra Ca in the sarcoplasm. Rapidly stretching the muscle produces the opposite effect. The extra Ca probably comes from a myofilament Ca activating site. Thus, a length change (force change) affects Ca binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelstein, R.S. and Eisenberg, E. (1980). Regulation and kinetics of the actin-myosin-ATP interaction. Ann. Rev. Biochem. 49: 921–956.

    Article  PubMed  CAS  Google Scholar 

  • Allen, D.G. and Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 27: 79–94.

    Google Scholar 

  • Ashley, C.C. and Moisescu, D.G. (1977), Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J. Physiol. 270: 827–652.

    Google Scholar 

  • Brandt, P.W., Cox, R.N. and Kawai, M. (1980). Can the binding of Cat+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc. Natl. Acad. Sci. USA 77: 4717–4720.

    Article  PubMed  CAS  Google Scholar 

  • Bremel, R.D. and Weber, A. (1972). Cooperation with actin filament in vertebrate skeletal muscle. Nature 238; 97–101.

    CAS  Google Scholar 

  • Ebashi, S. and Endo, M. (1968). Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123–183.

    Article  Google Scholar 

  • Fabiato, A. and Fabiato, F. (1978). Effects of pH on the myofilarnents and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276: 233–255.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. (1977). The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap. Biochim. Biophys. Acta 491: 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Godt, R.E. (1974). Calcium-activated tension of skinned muscle fibers of the frog: dependence on magnesium adenosine triphosphate concentration. J. Gen. Physiol. 63: 722–739.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A.M. and Ridgway, E.B. (1978). Calcium transients and relaxation in single muscle fibers. Eur. J. Cardiol. 7: 27–34.

    Google Scholar 

  • Hellem, D.C. and Podolsky, R.J. (1969). Force measurements in skinned muscle fibres. J. Physiol. 200: 807–819.

    Google Scholar 

  • Kerrick, W.G.L., Secrist, D., Coby, R. and Lucas, S. (1976). Development of difference between red and white muscles in sensitivity to Caz+ in rabbit from embryo to adult. Nature 260: 440–441.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J.M. and Weber, A. (1981). Competition between tropomyosin and myosin and cooperativìty of the tropomyosin-actin filament. In: The Regulation of Muscle Contraction. A.D. Grinnell and M.A.B. Brazier (Eds.), New York: Academic Press.

    Google Scholar 

  • Ridgway, E.B. and Ashley, C.C. (1967). Calcium transients in single muscle fibers. Biochem. Biophys. Res. Comm. 29: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway, E.B., Gordon, A.M. and Martyn, D.M. (1983) Hysteresis in the force-pCa relationship in muscle. Science, in press.

    Google Scholar 

  • Robertson, S.P. and Kerrick, W.G.L. (1979). The effects of pH on Caz+ -activated force in frog skeletal muscle fibers. Pflügers Archiv 380: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, E.W. (1979). Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit. Rev. Biochem. 6: 103–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gordon, A.M., Ridgway, E.B., Martyn, D.A. (1984). Calcium Sensitivity is Modified by Contraction. In: Pollack, G.H., Sugi, H. (eds) Contractile Mechanisms in Muscle. Advances in Experimental Medicine and Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4703-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4703-3_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4705-7

  • Online ISBN: 978-1-4684-4703-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics