Skip to main content

Cross-Bridge States in Invertebrate Muscles

  • Chapter
Contractile Mechanisms in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 37))

Abstract

Arguments are presented for doubting whether the effect of AMPPNP on insect flight muscle in rigor signals a reversion of the power stroke of attached cross-bridges. Instead, the effect of this nucleotide on insect and other muscles may be better explained in terms of the behavior of detached bridges. Knowledge of events in the detached half of the contractile cycle may nevertheless be relevant to understanding the mechanism of energy transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Goody, R.S., Holmes, K.C., Mannherz, H.G., Barrington-Leigh, J. & Rosenbaum, G. (1975). X-ray studies of insect flight muscle with ATP analogues. Biophys. J. 15: 687–705.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, W.F. (1979). On the origin of the contractile force in skeletal muscle. Proc. Natl. Acad. Sci. USA. 76: 5066–5070.

    Article  PubMed  CAS  Google Scholar 

  • Haselgrove, J.C. (1975). X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol. 92: 113–143.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H.E. (1983). This volume.

    Google Scholar 

  • Kuhn, H.J. (1981). The mechanochemistry of force production in muscle. J. Muscle Res. Cell Motil. 2: 7–44.

    Article  PubMed  CAS  Google Scholar 

  • Marston, S.B., Rodger, C.D. and Tregear, R.T. (1976). Changes in muscle cross-bridges when ß,7-imido ATP binds to myosin. J. Mol. Biol. 104: 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Offer, G., Couch, J., O’Brien, E. and Elliott, A. (1981). Arrangement of cross-bridges in insect flight muscle in rigor. J. Mol. Biol. 151: 663–702.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M.K. (1968). Ultrastructure of insect flight muscle. J. Mol. Biol. 31: 155–176.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M.K., Holmes, K.C. and Tregear, R.T. (1965). Induced changes in orientation in the cross-bridges of glycerinated insect flight muscle. Nature 207: 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M.K. and Garrett, W.E. (1977). Electron microscope studies of insect flight muscle in rigor. In: Insect Flight Muscle, pp. 115–136, ed. R.T. Tregear. Amsterdam: Elsevier North Holland.

    Google Scholar 

  • Reedy, M.C., Reedy, M.K. and Goody, R.S. (1981). Cross-bridge structure in rigor and AMPPNP states of insect flight muscle. Biophys. J. 33: 22a.

    Google Scholar 

  • Shriver, J.W. and Sykes, B.D. (1981). Phosphorus-31 Nuclear Magnetic Resonance Evidence for two conformations of myosin subfragment-1 nucleotide complexes. Biochemistry 20: 2004–2012.

    Article  PubMed  CAS  Google Scholar 

  • Tregear, R.T., Milch, J.R., Goody, R.S., Holmes, K.C. & Rodger, C.D. (1979). The use of some novel X-ray diffraction techniques to study the effect of nucleotides on cross-bridges in insect flight muscle. In: Cross-bridge Mechanism in Muscle Contraction, ed. Sugi, H. and Pollack, G.H., pp. 425–440. Tokyo: Univ. of Tokyo Press.

    Google Scholar 

  • Wray, J.S. (1979) Filament geometry and the activation of insect flight muscles. Nature 280: 325–326.

    Article  Google Scholar 

  • Wray, J.S. (1982). Organization of myosin in invertebrate thick filaments In: Basic Biology of Muscles: A Comparative Approach, ed. Twarog, B.M., Levine, R.J.C. and Dewey, M.M., New York: Raven Press.

    Google Scholar 

  • Wray, J.S., Vibert, P.J. and Cohen, C. (1974). Cross-bridge arrangements in Lirnulus muscle. J. Mol. Biol. 88: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Wray, J.S., Vibert, P.J. and Cohen, C. (1978). Actin filaments in muscle: pattern of tropomyosin/troponln attachments. J. Mol. Biol. 124: 501–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Wray, J.S. (1984). Cross-Bridge States in Invertebrate Muscles. In: Pollack, G.H., Sugi, H. (eds) Contractile Mechanisms in Muscle. Advances in Experimental Medicine and Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4703-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4703-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4705-7

  • Online ISBN: 978-1-4684-4703-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics