Skip to main content

Optical Monitoring of Electrical Activity

Detection of Spatiotemporal Patterns of Activity in Hippocampal Slices by Voltage-Sensitive Probes

  • Chapter
Brain Slices
  • 109 Accesses

Abstract

This chapter describes a novel approach to investigate the spatiotemporal distribution of electrical activity in nervous systems. Using voltage-sensitive dyes and an electro-optical measuring system, it has recently become possible to monitor electrical activity simultaneously from multiple sites on the processes of single nerve cells, either in culture or in an intact central nervous system (CNS) in vitro, to detect the activity of many individual neurons controlling a behavioral response in invertebrate ganglia, or to follow the activity of populations of neurons at many neighboring loci in mammalian brain slices or in the intact brain. Employing optical recordings and a display processor, the images of nerve cells light up on a TV monitor when they are electrically active. Thus, the spread of electrical activity can literally be visualized in slow motion. This chapter describes recent progress in the implementation of this new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agmon, A., Hildesheim, R., Anglister, L., and Grinvald, A., 1982, Optical recording from processes of individual leech CNS neurons iontophoretically injected with new fluorescent voltage-sensitive dyes, Neurosci. Lett. 10:535.

    Google Scholar 

  • Anglister, L., and Grinvald, A., 1983, Real-time visualization of the spatio-temporal spread of electrical responses in the optic tectum of vertabrates, IsraelJ. Med. Sci., in press.

    Google Scholar 

  • Andersen, P., Eccles, J. C., and Loyning, Y., 1964, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27:608–619.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1978, Functional characteristics of unmyelinated fibers in the hippocampal cortex, Brain Res. 144:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.

    PubMed  CAS  Google Scholar 

  • Cohen, L. B. and Keynes, R. D., 1971, Changes in light-scattering associated with the action potential in crab nerve, J. Physiol. (London) 212:259–275.

    CAS  Google Scholar 

  • Cohen, L. B. and Salzberg, B. M., 1978, Optical measurement of membrane potential, Rev. Physiol. Biochem. Pharmacol. 83:35–88.

    PubMed  CAS  Google Scholar 

  • Cohen, L. B., Keynes, R. D., and Hille, B., 1968, Light scattering and birefringence changes during nerve activity, Nature (London) 218:438–441.

    Article  CAS  Google Scholar 

  • Cohen, L. B., Keynes, R. D., and Landowne, D., 1972, Changes in axon light-scattering that accompany the action potential: Current dependent components, J. Physiol. (London) 224:727–752.

    CAS  Google Scholar 

  • Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C. H., 1974, Changes in axon fluorescence during activity; Molecular probes of membrane potential, J. Membrane Biol. 19:1–36.

    Article  CAS  Google Scholar 

  • Cohen, L. B., Salzberg, B. M., and Grinvald, A., 1978, Optical methods for monitoring neuron activity, Annu. Rev. Neurosa. 1:171–182.

    Article  CAS  Google Scholar 

  • Grinvald, A. and Farber, I., 1981. Optical recording of Ca+2 action potentials from growth cones of cultured neurons using a laser microbeam, Science 212:1164–1169.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Salzberg, B. M. and Cohen, L. B., 1977, Simultaneous recording from several neurons in an invertebrate central nervous system, Nature (London) 268:140–142.

    Article  CAS  Google Scholar 

  • Grinvald, A., Ross, W. N., Farber, I., Saya, D., Zutra, A., Hildesheim, R., Kuhnt, U., Segal, M., and Kimhi, Y., 1980, Optical methods to elucidate electrophysiological parameters, In: Neurotransmitters and Their Receptors (U. Z. Littauer, ed.), John Wiley and Sons, New York, pp. 531–546.

    Google Scholar 

  • Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., 1981a, Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element ‘‘Photodiode’’ array, J. Neurophysiol. 45:829–840.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Ross, W. N., and Farber, I., 1981b, Simultaneous optical measurements of electrical activity from multiple sites on processes of cultural neurons, Proc. Natl. Acad. Sci. USA, 78:3245–3249.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Manker, A., and Segal, M., 1982b, Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes, J. Physiol. (London), 333:269–291.

    CAS  Google Scholar 

  • Grinvald, A., Hildesheim, R., Farber, I. C., and Anglister, L., 1982a, Improved fluorescent probes for the measurement of rapid changes in membrane potential, Biophys. J., 39:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Anglister, L., Hildesheim, R., and Freeman J. A., 1983a, Optical monitoring of naturally evoked dynamic patterns of neuronal activity from the frog optic tectum, Neurosci. Abstr. 9:540.

    Google Scholar 

  • Grinvald, A., Fine, A., Farber, I. C., and Hildesheim, R., 1983b, Fluorescence monitoring of electrical responses from small neurons and their processes, Biophys. J. 42:195–198.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Hildesheim, R., Agmon, A., and Fine A., 1982c, Optical recording from neuronal processes and their visualization by iontophoretic injection of new fluorescent voltage sensitive dyes, Neurosa. Abstr. 8:491.

    Google Scholar 

  • Gupta, R., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Boyle, M. B., Waggoner, A. S., and Wang, C. H., 1981, Improvements in optical methods for measuring rapid changes in membrane potential, J. Membrane Biol. 58:123–138.

    Article  CAS  Google Scholar 

  • Krauthaimer, V. and Ross, W. N., 1981, Optical measurement of potential changes in axons and processes of neurons of a barnacle ganglion, Neurosa. Abstr. 7:114.

    Google Scholar 

  • Lipton, P., 1973, Effects of membrane depolarization on light scattering by cerebral slices, J. Physiol. (London) 231:365–383.

    CAS  Google Scholar 

  • Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.

    Google Scholar 

  • MacVicar, B. A. and Dudek, S. E., 1981, Electrotonic coupling between pyramidal cells: A direct demonstration in rat hippocampal slices, Science 213:782–785.

    Article  PubMed  CAS  Google Scholar 

  • Orbach, S. H. and Cohen, L. B., 1983, Simultaneous optical monitoring of activity from many areas of the salamander olfactory bulb. A new method for studying functional organization in the vertebrate CNS, J. Neurosci, in press.

    Google Scholar 

  • Orbach, S. H., Cohen, L. B., and Grinvald, A., 1982, Optical monitoring of evoked activity in the visual cortex of the rat, Biol. Bull, 163:389.

    Google Scholar 

  • Orback, S. H., Cohen, L. B., and Grinvald, A., 1983, Optical monitoring of electrical responses in the rat somatosensory and visual cortex, Israel J. Med. Sci., in press.

    Google Scholar 

  • Ross, W. N. and Reichardt, L. F., 1979, Species-specific effects on the optical signals of voltage sensitive dyes, J. Membrane Biol. 48:343–356.

    Article  CAS  Google Scholar 

  • Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H., 1977, Changes in absorption, fluorescence, dichroism and birefringence in stained axons: Optical measurement of membrane potential, J. Membrane Biol. 33:141–183.

    Article  CAS  Google Scholar 

  • Salzberg, B. M., Davila, H. V., and Cohen, L. B., 1973, Optical recording of impulses in individual neurons of an invertebrate central nervous system, Nature (London) 246:508–509.

    Article  CAS  Google Scholar 

  • Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N., 1977, Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons, J. Neurophys. 40:1281–1291.

    CAS  Google Scholar 

  • Schwartzkroin, P. A. and Prince, D. A., 1980, Effects of TEA on hippocampal neurons, Brain Res. 185:169–181.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington, C. S., 1953, Man on His Nature, Doubleday and Company, Inc., Garden City, New York, p. 183.

    Google Scholar 

  • Spencer, W. A. and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast prepotentials, J. Neurophysiol. 24:272–285.

    Google Scholar 

  • Tasaki, I., Watanabe, A., Sandlin, R., and Camay, L., 1968, Changes in fluorescence turbidity and birefringence associated with nerve excitation, Proc. Natl. Acad. Sci. USA, 61:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. A. and Schwartzkroin, P. A., 1980, The steady-state electrotonic analysis of intracellularly stained hippocampal neurons, J. Neurophysiol. 44:184–199.

    PubMed  CAS  Google Scholar 

  • Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8:47–63.

    Article  PubMed  CAS  Google Scholar 

  • Waggoner, A. S. and Grinvald, A., 1977, Mechanisms of rapid optical changes of potential sensitive dyes, Ann. N. Y. Acad. Sci. 303:217–242.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C., 1972, Intracellular study of seizure-like afterdischarges elicited in thin hippocampal sections in vitro, Exp. Neurol. 35:154–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Grinvald, A., Segal, M. (1984). Optical Monitoring of Electrical Activity. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics