Skip to main content

Passive Electrotonic Structure and Dendritic Properties of Hippocampal Neurons

  • Chapter
Brain Slices

Abstract

Most central nervous system (CNS) neurons possess a considerable spatial dispersion of structures specialized for postsynaptic reception. Variability in dendritic structure, as well as differing distributions of spines (Scheibel and Scheibel, 1968) and other synaptic specializations, confer unique capabilities on each cell type. Neurons in the hippocampus demonstrate a complexity of neuronal shape (Figure 1), and dispersion of spine synapses that are typical particularly of cortical tissue (Minkwitz, 1976; Wenzel et al., 1981). The various classes of hippocampal neurons also possess a distribution of nonsynaptic ionic conductances that can modify signal transfer from input sites to the summation or recording site (Jack et al., 1975; Rall, 1977), and thus complicate the interpretation of synaptic inputs. Such signal modification may occur according to both passive cable attenuation and nonlinear forms of distortion, neither of which are usually subject to intuition. Quantitative models of neurons have been developed both to enhance our ability to extrapolate from a recorded signal back to the original synaptic signal, and also to help us understand the signal’s importance and role in the process of neuronal integration. Complex processing and multiple interactions can be approached in a model in a way that cannot be done experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, P., Silfvenius, H., Sundberg, F. H., and Sveen, O., 1980, A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea pig hippocampal slices in vitro, J. Physiol (London) 307:273–299.

    CAS  Google Scholar 

  • Barnes, C. A. and McNaughton, B. L., 1980, Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence, J. Physiol, (London) 309:473–485.

    CAS  Google Scholar 

  • Barrett, J. N. and Crill, W. E., 1974, Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurons, J. Physiol. (London) 239:325–345.

    CAS  Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.

    PubMed  CAS  Google Scholar 

  • Carlen, P. L. and Durand, D., 1981, Modelling the postsynaptic location and magnitude of tonic conductance changes resulting from neurotransmitters or drugs, Neuroscience 6:839–846.

    Article  PubMed  CAS  Google Scholar 

  • Carnevale, N. T. and Johnston, D., 1982, Electrophysiological characterization of remote chemical synapses, J. Neurophysiol. 47:606–621.

    PubMed  CAS  Google Scholar 

  • Crick, F., 1982, Do dendritic spines twitch? Trends Neurosci. 5:44–46.

    Article  Google Scholar 

  • Diamond, J., Gray, E. G., and Yasargil, G. M., 1971, The function of the dendritic spine: An hypothesis, in: Excitatory Synaptic Mechanisms (P. Andersen and K. Jansen, eds.), Universitetsforlaget, Oslo, pp. 213–222.

    Google Scholar 

  • Durand, D., Carlen, P. L., Gurevich, N., Ho, A., and Kunov, H., 1983, Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining, J. Neurophysiol, in press.

    Google Scholar 

  • Fifkova, E. and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells, following stimulation of the entorhinal area, J. Neurocytol. 6:211–230.

    Article  PubMed  CAS  Google Scholar 

  • Gray, E. G., 1982, Rehabilitating the dendritic spine, Trends Neurosci. 5:5–6.

    Article  Google Scholar 

  • Iansek, R. and Redman, S. J., 1973, An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse, J. Physiol. (London) 234:613–636.

    CAS  Google Scholar 

  • Jack, J. J. B., Miller, S., Porter, R., and Redman, S. J., 1971, The time course of minimal excitatory postsynaptic potentials evoked in spinal motoneurones by group IA afferent fibers, J. Physiol. (London) 215:353–380.

    CAS  Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Clarendon Press, Oxford.

    Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group IA afférents, J. Physiol. (London) 321:65–96.

    CAS  Google Scholar 

  • Johnston, D., 1981, Passive cable properties of hippocampal CA3 pyramidal neurons, Cell. Mol. Neurobiol. 1:41–55.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D. and Brown, T. H., 1983, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50:464–486.

    PubMed  CAS  Google Scholar 

  • Knowles, W. D., and Schwartzkroin, P. A., 1981, Local circuit synaptic interactions in hippocampal brain slices, J. Neurosci. 1:318–322.

    PubMed  CAS  Google Scholar 

  • Leung, L. S., 1982, Nonlinear feedback model of neuronal populations in the hippocampal CA1 region, J. Neurophysiol. 47:845–868.

    PubMed  CAS  Google Scholar 

  • Lux, H. D. and Schubert, P., 1975, Some aspects of the electroanatomy of dendrites, in: Advances in Neurology, Vol. 12 (G. W. Kreutzberg, ed.), Raven Press, New York, pp. 29–44.

    Google Scholar 

  • MacVicar, B. A. and Dudek, F. E., 1980, Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells, Brain Res. 184:220–223.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A. and Dudek, F. E., 1982, Electrotonic coupling between granule cells of the rat dentate gyrus: Physiological and anatomical evidence, J. Neurophysiol. 47:579–592.

    PubMed  CAS  Google Scholar 

  • Mates, J. W. B. and Horowitz, J. M., 1976, Instability in a hippocampal neuronal network, Compt. Programs Biomed. 6:74–84.

    Article  CAS  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro, J. Neurophysiol. 46:952–966.

    CAS  Google Scholar 

  • Minkwitz, H-G., 1976, Zur Entwicklung der Neuronenstruktur des Hippocampus während der prä und postnatalen Ontogenese der Albinoratte. III. Mitteilung: Morphometrische Erfassung der ontogenetischen Veränderungen in Dendritenstruktur und Spine Besatz an Pyramiden-Neuronen (CA1) des rlippocampus, J. Hirnforsch. 17:255–275.

    PubMed  CAS  Google Scholar 

  • Norman, R. S., 1972, Cable theory for finite length dendritic cylinders with initial and boundary conditions, Biophys. J. 12:25–45.

    Article  PubMed  CAS  Google Scholar 

  • Perkel, D. H. and Mulloney, B., 1978, Electrotonic properties of neurons: Steady-state compartmental model, J. Neurophysiol. 41:621–639.

    PubMed  CAS  Google Scholar 

  • Perkel, D. H., Mulloney, B., and Budelli, R. W., 1981, Quantitative methods for predicting neuronal behavior, Neuroscience 6:823–837.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol 1:491–527.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input, J. Neurophysiol. 30:1138–1168.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1969, Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J. 9:1483–1508.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity (C.D. Woody, K. A. Brown, T. J. Crow Jr., and J. D. Knispel, eds.), Brain Information Service, Los Angeles, pp. 13–21.

    Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology. Section I. The Nervous System, Volume 1 Cellular Biology of Neurons (E. R. Kandel, ed.), Williams & Wilkins, Bethesda, pp. 39–98.

    Google Scholar 

  • Rinzel, J. and Rall, W., 1974, Transient response in a dendritic neuron model for current injected at one branch, Biophys. J. 14:759–790.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, M. E. and Scheibel, A. B., 1968, On the nature of dendritic spines—Report of a workshop, Comm. Behav. Biol. I(A):231–265.

    Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal ‘in vitro’ slice preparation, Brain Res. 85:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1977, Further characteristics of hippocampal CA1 cells in vitro, Brain Res. 128:53–68.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1981, To slice or not to slice, in: Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 15–50.

    Google Scholar 

  • Swindale, N. V., 1981, Dendritic spines only connect, Trends Nuerosci. 4:240–241.

    Article  Google Scholar 

  • Traub, R. D. and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476–496.

    PubMed  CAS  Google Scholar 

  • Traub, R. D. and Wong, R. K. S., 1981, Penicillin-induced epileptiform activity in the hippocampal slice: A model of synchronization of CA3 pyramidal cell bursting, Neuroscience 6:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D. and Wong, R. K. S., 1983, Synchronized burst discharge in the disinhibited hippocampal slice. II. Model of the cellular mechanism, J. Neurophysiol. 49:459–471.

    PubMed  CAS  Google Scholar 

  • Turner D. A., 1982, Soma and dendritic spine transients in intracellularly-stained hippocampal neurons, Neurosci. Abstr. 8:945.

    Google Scholar 

  • Turner, D. A. and Schwartzkroin, P. A., 1980, Steady-state electrotonic analysis of intracellularly-stained hippocampal neurons, J. Neurophysiol. 44:184–199.

    PubMed  CAS  Google Scholar 

  • Turner, D. A. and Schwartzkroin, P. A., 1983, Electrical characteristics of dendrites and dendritic spines in intracellularly-stained CA3 and dentate neurons, J. Neuroscience, in press.

    Google Scholar 

  • Wenzel, J., Stender, G., and Duwe, G., 1981, The development of the neuronal structure of the fascia dentata of the rat. Neurohistologic, morphometric, ultrastructural and experimental investigations, J. Hirnforsch. 22:629–683.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Prince, D. A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Traub, R. D., 1983, Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in CA2-CA3 region, J. Neurophysiol. 49:442–458.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., 1982, Quantal analysis of excitatory postsynaptic potentials induced in hippocampal neurons by activation of granule cells, Exp. Brain Res. 46:170–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Turner, D.A., Schwartzkroin, P.A. (1984). Passive Electrotonic Structure and Dendritic Properties of Hippocampal Neurons. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics