Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 75))

Abstract

The most familiar mode of neural communication is electrical and synaptic signaling by individual nerve cells. Here we shall consider a few stereotypical phenomena of such signaling. A primary observable is the potential V (deviation from rest) across the cell membrane which responds to applied stimulating current Iapp and to changes in membrane permeability to the various ion species. These permeability changes also usually depend on V and, for excitable membrane, result in the generation of the nerve impulse. We will describe and present results for models (some quantitative but others more qualitative) of excitable membrane behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aronson, D.G., 1976, “Lectures on Nonlinear Diffusion,” Univ. of Houston, unpublished notes. Barker, J.L., and Smith, T.G., 1979, Three modes of communication in the nervous system, in: “Modulators, Mediators, and Specifiers in Neuronal Function,” Y.H. Ehrlich, ed., Plenum Press, N.Y.

    Google Scholar 

  • Best, E.N., 1979, Null space in the Hodgkin-Huxley equations: a critical test, Biophys. J., 27: 87.

    Article  Google Scholar 

  • Carpenter, G.A., 1979, Bursting phenomena in excitable membranes, SIAM J. Appl. Math., 36: 334.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooley, J., Dodge, F., and Cohen, H., 1965, Digital computer solutions for excitable membrane models, J. Cell. Comp. Physiol., 66, Suppl. 2: 99.

    Article  Google Scholar 

  • Evans, J.W., and Feroe, J., 1977, Local stability theory of the nerve impulse, Math. Biosci., 37: 23.

    Article  MATH  Google Scholar 

  • Fitzhugh, R., 1960, Thresholds and plateaus in the Hodgkin-Huxley nerve equations, J. Gen. Physiol., 43: 867.

    Article  Google Scholar 

  • Fitzhugh, R., 1961, Impulses and physiological states in models of nerve membrane, Biophys. J., 1: 445.

    Article  Google Scholar 

  • Fitzhugh, R., 1969, Mathematical models of excitation and propagation in nerve, in: “Biological Engineering,” H.P. Schwan, ed., McGraw-Hill, N.Y.

    Google Scholar 

  • Goldstein, S.S. and Rail, W., 1974, Changes of action potential shape and velocity for changing core conductor geometry, Biophys. J., 14: 731.

    Google Scholar 

  • Guttman, R., Lewis, S., and Rinzel, J., 1980, Control of repetitive firing in squid axon membrane as a model for a neuron oscillator J. Physiol. (Lond.), 305: 377.

    Google Scholar 

  • Hassard, B., 1978, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon, J. Theoret. Biol., 71: 401

    Article  MathSciNet  Google Scholar 

  • Hille, B., 1976, Ionic basis of resting and action potentials, in: “Handbook of Physiology, The Nervous System, Vol. I,” E.R. Kandel, ed., Am. Physiol. Soc.

    Google Scholar 

  • Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.), 117: 500.

    Google Scholar 

  • Jalife, J., and Antzelevitch, C., 1979, Phase-resetting and annihila-tion of pacemaker activity in cardiac tissue, Science, 206: 695.

    Article  ADS  Google Scholar 

  • Keener, J., 1980, Waves in excitable media, SIAM J. Appl. Math., 39: 528.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuffler, S.W., and Nicholls, J.G., 1977, “From Neuron to Brain,” Sinauer, Sunderland, Mass.

    Google Scholar 

  • Miller, R.N., and Rinzel, J., 1981, The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model, Biophys. J.

    Google Scholar 

  • Nagumo, J.S., Arimoto, S., and Yoshizawa, S., 1962, An active pulse transmission line simulating nerve axon, Proc. IRE., 50: 2061.

    Article  Google Scholar 

  • Nicholson, C., 1980, Dynamics of the brain cell microenvironment, Neurosciences Research Program Bulletin, 18.

    Google Scholar 

  • Pauwelussen, J.P., 1980, Nerve impulse propagation in a branching nerve system: a simple model, Technical Report, Mathematics Center, Amsterdam.

    Google Scholar 

  • Perkel, D.H., and Mulloney, B., 1974, Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound, Science, 185: 181.

    Article  ADS  Google Scholar 

  • Plant, R.E., 1978, The effects of calcium on bursting neurons, Biophys. J., 21: 217.

    Article  Google Scholar 

  • Plant, R.E., 1981, Bifurcation and resonance in a model for bursting nerve cells, J. Math. Biology, 11: 15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rail, W., 1976, Core conductor theory and cable properties of nerve cells, in: Handbook of Physiology, The Nervous System, Vol. II, E.R. Kandel, ed., Am. Physiol. Soc.

    Google Scholar 

  • Rinzel, J., and Keller, J.B., 1973, Traveling wave solutions of a nerve conduction equation, Biophys. J., 13: 1313.

    Article  Google Scholar 

  • Rinzel, J., 1977, Repetitive nerve impulse propagation: Numerical results and methods, in: — “Nonlinear Diffusion,” W.E. Fitzgibbon (III) and H.F. Walker, ed., Research Notes in Mathematics, Pitman.

    Google Scholar 

  • Rinzel, J., 1978a, Integration and propagation of neuroelectric signals, in: Studies in Mathematical Biology, S.A. Levin, ed., Math. Assoc. America.

    Google Scholar 

  • Rinzel, J., 1978b, On repetitive activity in nerve, Federation Proc., 37: 2793.

    Google Scholar 

  • Rinzel, J., 1978c, Repetitive activity and Hopf bifurcation under point-stimulation for a simple Fitzhugh-Nagumo nerve conduction model, J. Math. Biology, 5: 363.

    MathSciNet  MATH  Google Scholar 

  • Rinzel, J., and Miller, R.N., 1980, Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations, Math. Biosci., 49: 27.

    Article  MathSciNet  MATH  Google Scholar 

  • Rinzel, J., 1980, Impulse propagation in excitable systems, in: “Proceedings of Math. Res. Center Advanced Seminar, Dynamics and Modelling of Reactive Systems, Vol. 44,” W.E. Stewart, W.H. Ray, and C.C. Conley, ed., Academic Press, N.Y.

    Google Scholar 

  • Schwartz, J.H., 1980, The transport of substances in nerve cells, Sci. Amer., 242: 152.

    Article  Google Scholar 

  • Selverston, A., 1976, A model system for the study of rhythmic behavior, in: “Simpler Networks and Behavior,” J.C. Fentress, ed., Sinauer, Sunderland, Mass.

    Google Scholar 

  • Troy, W.C., 1978, The bifurcation of periodic solutions in the Hodgkin-Huxley equations, Quart. Appi. Math., 36: 73.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Rinzel, J. (1981). Models in Neurobiology. In: Enns, R.H., Jones, B.L., Miura, R.M., Rangnekar, S.S. (eds) Nonlinear Phenomena in Physics and Biology. NATO Advanced Study Institutes Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4106-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4106-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4108-6

  • Online ISBN: 978-1-4684-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics