Skip to main content

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE,volume 2))

Abstract

In the extraction of metals from their ores, the process of mineral flotation plays a most important role. Flotation provides the means of separating and concentrating the valuable components of an ore to produce a grade of mineral concentrate suitable for feeding to efficient pyrometallurgical or hydro-metallurgical operations. The flotation process involves crushing the ore to liberate separate grains of the various valuable minerals and gangue components, pulping the ore particles with water, and then selectively rendering hydrophobic the surface of the mineral of interest. A stream of air bubbles is then passed through the pulp; the bubbles attach to and levitate the hydrophobic particles, which collect in a froth layer which flows over the weir of the flotation cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. G. Fleming and J. A. Kitchener, Endeavour 24, 101 (1965).

    Article  CAS  Google Scholar 

  2. K. L. Sutherland and I. W. Wark, Principles of Flotation, Australian Institute of Mining and Metallurgy, Melbourne (1955).

    Google Scholar 

  3. T. Young, Philos. Trans. Royal Soc. (London) 95, 65 (1805).

    Article  Google Scholar 

  4. A. Dupré, Theorie Mechanique de la Chaleur, Gauthiers-Villars, Paris (1869), p. 369.

    Google Scholar 

  5. D. W. Fuerstenau and S. Raghavan, in Flotation-A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1976), Chap. 3.

    Google Scholar 

  6. O. Mellgren, R. J. Gochim, H. L. Shergold, and J. A. Kitchener, in Proceedings of the 10th International Mineral Processing Congress, London, 1973, p. 451.

    Google Scholar 

  7. J. Laskowski and J. A. Kitchener, J. Colloid Interface Sci. 29, 670 (1969).

    Article  CAS  Google Scholar 

  8. A. D. Reed and J. A. Kitchener, J. Colloid Interface Sci. 30, 391 (1969).

    Article  Google Scholar 

  9. T. D. Blake and J. A. Kitchener, J. Chem. Soc. Faraday Trans. 1 68, 1435 (1972).

    Article  CAS  Google Scholar 

  10. C. Tanford, The Hydrophobic Effect, Wiley and Sons, New York (1973).

    Google Scholar 

  11. A. N. Frumkin, Usp. Khim. 2, 1 (1933).

    CAS  Google Scholar 

  12. A. N. Frumkin, Acta Physicochim. URSS 9, 313 (1938).

    CAS  Google Scholar 

  13. B. V. Derjaguin, J. Phys. Chem. (USSR) 3, 29 (1932).

    Google Scholar 

  14. B. V. Derjaguin and E. Obuchov, Acta Physicochim. URSS 5, 1 (1936).

    Google Scholar 

  15. P. A. Rehbinder, General Course in Colloid Chemistry, Moscow University (Moscow), 1949.

    Google Scholar 

  16. M. C. Fuerstenau and B. R. Palmer, in Flotation-A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1976), Chap. 7.

    Google Scholar 

  17. I. Iwasaki, S. R. B. Cooke, and A. F. Colombo, Report of Investigation No. 5593, U.S. Bureau of Mines, 1960.

    Google Scholar 

  18. H. J. Modi and D. W. Fuerstenau, Trans. AIME 217, 381 (1960).

    CAS  Google Scholar 

  19. M. C. Fuerstenau, in AIChE Symposium Series 150, Vol. 71, P. Somasundaran and R. B. Grieves, eds., AIChE, New York (1975), p. 16.

    Google Scholar 

  20. A. M. Gaudin and D. W. Fuerstenau, Trans. AIME 202, 958 (1955).

    Google Scholar 

  21. T. Wakamatsu and D. W. Fuerstenau, Trans. AIME 254, 123 (1973).

    CAS  Google Scholar 

  22. F. F. Aplan and D. W. Fuerstenau, in Froth Flotation, 50th Anniversary Volume, D. W. Fuerstenau, ed., AIME, New York (1962), p. 170.

    Google Scholar 

  23. C. H. Keller and C. P. Lewis, U.S. Patent 1,554,216, 1,554, 220 (1925).

    Google Scholar 

  24. R. W. Fox, Roy. Soc. (London) Philos. Trans., 399 (1830).

    Google Scholar 

  25. S. G. Salami and J. C. Nixon, in Recent Developments in Mineral Dressing Institute of Mining and Metallurgy, London (1953), p. 503;

    Google Scholar 

  26. J. C. Nixon, Proc. Int. Congr. Surface Activ. 2nd, 3, 369 (1957).

    Google Scholar 

  27. I. N. Plaksin and S. V. Bessonov, Proc. Int. Congr. Surface Activ., 2nd, 3, 361 (1957).

    CAS  Google Scholar 

  28. I. N. Plaksin and R. Sh. Shafeev, Dokl. Akad. Nauk SSSR 128, 777 (1957).

    Google Scholar 

  29. R. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria, Harper and Row, New York (1965).

    Google Scholar 

  30. E. Peters in Trends in Electrochemistry, J. O’M. Bockris, D. A. J. Rand, and B. J. Welch, eds., Plenum, New York (1977), p. 167.

    Google Scholar 

  31. J. R. Gardner and R. Woods, J. Electroanal. Chem. 100 (1979).

    Google Scholar 

  32. J. R. Gardner and R. Woods, Int. J. Miner. Process. 6, 1 (1979).

    Article  CAS  Google Scholar 

  33. G. W. Heyes and W. T. Trahar, Int. J. Miner. Process. 4, 317 (1977).

    Article  CAS  Google Scholar 

  34. S. Chander and D. W. Fuerstenau, Trans. AIME 252, 62 (1972).

    Google Scholar 

  35. R. Tolun and J. A. Kitchener, Trans. I.M.M. 73, 313 (1964).

    Google Scholar 

  36. R. Woods, J. Phys. Chem. 75, 354 (1971).

    Article  CAS  Google Scholar 

  37. A. Kowal and A. Pomianowski, J. Electroanal. Chem. 46, 411 (1973).

    Article  CAS  Google Scholar 

  38. S. Chander and D. W. Fuerstenau, J. Electroanal. Chem. 56, 217 (1974).

    Article  CAS  Google Scholar 

  39. N. D. Janetski, S. I. Woodburn, and R. Woods, Int. J. Miner. Process. 4, 227 (1977).

    Article  CAS  Google Scholar 

  40. J. R. Gardner and R. Woods, Aust. J. Chem. 30, 981 (1977).

    Article  CAS  Google Scholar 

  41. S. M. Ahmed, Int. J. Miner. Process, 5, 168 (1978).

    Google Scholar 

  42. I. C. Hamilton and R. Woods, Aust. J. Chem. 32, 2171 (1979).

    Article  CAS  Google Scholar 

  43. R. Woods, in Flotation—A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1976), Chap. 10.

    Google Scholar 

  44. M. Sato, Econ. Geol. 55, 1202 (1960).

    Article  CAS  Google Scholar 

  45. E. H. Nickel, J. R. Ross, and M. R. Thornber, Econ. Geol. 69, 93 (1974).

    Article  CAS  Google Scholar 

  46. H. Tributsch and H. Gerischer, J. Appl. Chem. Biotechnol. 26, 247 (1976).

    Article  Google Scholar 

  47. H. Majima and E. Peters, in Proceedings of the 8th Mineral Processing Congress, Leningrad, 1968, Vol. II, Institut Mekhanobr., Leningrad (1969), p. 5.

    Google Scholar 

  48. T. Biegler, D. A. J. Rand, and R. Woods, J. Electroanal. Chem. 60, 151 (1975).

    Article  CAS  Google Scholar 

  49. M. Aston, D. A. J. Rand, and R. Woods, unpublished work.

    Google Scholar 

  50. T. Biegler, D. A. J. Rand, and R. Woods, in Trends in Electrochemistry, J. O’M. Bockris, D. A. J. Rand, and B. J. Welch, eds., Plenum Press, New York (1977), p. 291.

    Chapter  Google Scholar 

  51. D. A. J. Rand, J. Electroanal. Chem. 83, 19 (1977).

    Article  CAS  Google Scholar 

  52. H. Tributsch, Ber. Bunsenges. Phys. Chem. 79, 571, 580 (1975).

    CAS  Google Scholar 

  53. M. H. Jones and J. T. Woodcock, Int. J. Miner. Process. 5, 285 (1978).

    Article  CAS  Google Scholar 

  54. R. Woods, in Avances en Flotacion, Vol. 3, S. Castro and J. Alvarez, eds., Universidad de Concepcion, Concepcion, Chile (1977), p. 1.

    Google Scholar 

  55. I. Wark and A. B. Cox, Trans. AIME 112, 245 (1934).

    Google Scholar 

  56. B. Ball and R. S. Rickard, in Flotation—A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1977), Chap. 15.

    Google Scholar 

  57. J. Shimoiizaku, S. Usui, J. Matsuoka, and H. Sasaki, in Flotation—A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1976), Chap. 13.

    Google Scholar 

  58. N. P. Finkelstein and S. A. Allison, in Flotation—A. M. Gaudin Memorial Volume,Vol. 1, M. C. Fuerstenau, ed., AIME, New York (1976), Chap. 14.

    Google Scholar 

  59. J. R. Gardner and R. Woods, Aust. J. Chem. 26, 1635 (1973).

    Article  CAS  Google Scholar 

  60. J. R. Gardner and R. Woods, Aust. J. Chem. 30, 981 (1974).

    Article  Google Scholar 

  61. G. W. Heyes and W. J. Trahar, Int. J. Miner. Process. 6, 229 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Woods, R. (1981). Mineral Flotation. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3785-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3785-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3787-4

  • Online ISBN: 978-1-4684-3785-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics