Skip to main content

Hayflick’s hypothesis: an approach to in vivo testing

  • Chapter
Biology of Aging and Development

Part of the book series: Faseb Monographs ((FASEBM,volume 3))

  • 173 Accesses

Abstract

The experimental evidence relating to the hypothesis of finite cellular life is reviewed. It is emphasized that even if somatic cell production were limited its total potential would have to be vast to provide for extensive cellular regeneration. The actual limit of reproductive cell life would therefore not likely be reached in a normal life-span. It is proposed to test the hypothesis by deliberate exhaustion of stem-cell reserve, and iron-55 cytocide is described as an experimental system that might be applicable.—Reincke, U., H. Burlington, E. P. Cronkite and J. Laissue. Hayflick’s hypothesis: an approach to in vivo testing. Federation Proc. 34: 71–75, 1975.

From Session III, Finite versus infinite proliferative and functional capacities of cells, of the FASEB Conference on Biology of Development and Aging, presented at the 58th Annual Meeting of the Federation of American Societies for Experimental Biology, Atlantic City, N.J., April 10, 1974.

Research supported by the Atomic Energy Commission, the Leukemia Society of America, Inc., and by National Institutes of Health research grant number HL 15685-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, A. H., E. A. Mcculloch, L. Siminovitch and J. E. Till. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 26: 296, 1965.

    PubMed  CAS  Google Scholar 

  2. Boggs, D. R., J. C. Marsh, P. A. Chervenick, G. E. Cartwright and M. M. The effect of repetitive irradiation upon proliferative ability of colony-forming cells. J. Exptl. Med. 126: 871, 1967.

    Article  CAS  Google Scholar 

  3. Bruce, W. R., and E. A. Mcculloch. The effect of erythropoietic stimulation on the hemopoietic colony-forming cells of mice. Blood 23: 216, 1964.

    PubMed  CAS  Google Scholar 

  4. Buetow, D. E. Cellular content and cellular proliferation changes in the tissues and organs of the aging mammal. In: Cellular and Molecular Renewal in the Mammalian Body, edited by Cameron, I. L. and J. D. Thrasher. New York: Academic, 1971, p. 87.

    Google Scholar 

  5. Chen, M. D. Age-related changes in hematopoietic stem cell populations of a long-lived hybrid mouse./ Cellular Physiol. 78: 225, 1971.

    Article  CAS  Google Scholar 

  6. Cudkowicz, G., A. C. Upton, L. H. Smith, D. G. Gosslee and W. L. Hughes. An approach to the characterization of stem cells in mouse bone marrow. Ann. N.Y. Acad. Sci. 114: 571, 1964.

    Article  PubMed  CAS  Google Scholar 

  7. Danes, B. S. Progeria: a cell culture study on aging. J. Clin. Invest. 50: 2000, 1971.

    Google Scholar 

  8. Daniel, C. W., L. J. T. Young, D. Medina and K. B. Deome. The influence of mammogenic hormones on serially transplanted mouse mammary gland. Exptl. Gerontology 6: 95, 1971.

    Article  CAS  Google Scholar 

  9. Davis, M. L., A. C. Upton and L. C. Satterfield. Growth and senescence of the bone marrow stem cell pool in RFM/Un mice. Proc. Soc. Exptl. Biol. Med. 137: 1452, 1971.

    CAS  Google Scholar 

  10. Delmonte, L. Hemopoietin-initiated changes in differential retransplantability of mouse femoral marrow-derived colony-forming units (CFU). Proc. Soc. Expel. Biol. Med. 141: 227, 1972.

    CAS  Google Scholar 

  11. Donohue, D. M., B. W. Gabrio and C. A. Finch. Quantitative measurement of hematopoietic cells of the marrow. J. Clin. Invest. 37: 1564, 1958.

    Article  PubMed  CAS  Google Scholar 

  12. Harrison, D. E., Normal production of erythrocytes by mouse bone marrow continuous for 73 months. Proc. Natl. Acad. Sci. U.S. 70: 3184, 1973.

    Article  CAS  Google Scholar 

  13. Hayflick, L. The limited in vitro lifetime of human diploid cell strains, Exptl. Cell Res. 37: 614, 1965.

    Article  PubMed  CAS  Google Scholar 

  14. Hayflick, L., and P. S. Moorhead. The serial cultivation of human diploid cell strains. Exptl. Cell Res. 25: 585, 1961.

    Article  PubMed  CAS  Google Scholar 

  15. Holeckova, E., and V. J. Cristofalo (editors) Aging in Cell and Tissue Culture. New York: Plenum, 1970.

    Google Scholar 

  16. Hoshino, K. Indefinite in vivo life span of serially iso-grafted mouse mammary gland. Experientia 26: 1393, 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Kay, H. G. M. How many cell generations? Lancet 2: 418, 1965.

    Article  PubMed  CAS  Google Scholar 

  18. Koukalova, B., and Z. Karpfel. Proliferative ability of X-irradiated bone marrow from donors of different ages. Folic Biol., Prague 12: 283, 1966.

    CAS  Google Scholar 

  19. Kretchmar, A. L., and W. R. Con-Over. A difference between spleen-derived and bone marrow-derived colony-forming units in ability to protect lethally irradiated mice. Blood 36: 772, 1970.

    PubMed  CAS  Google Scholar 

  20. Krohn, P. L. Review lecture on senescence: II. Heterochronic transplantation in the study of ageing. Proc. Roy. Soc. London, Ser. B. 157: 128, 1963.

    Article  Google Scholar 

  21. Lajtha, L. G., R. Oliver and C. W. Gurney. Kinetic model of a bone marrow stem-cell population. Brit. J. Haematol. 8: 442, 1962.

    Article  CAS  Google Scholar 

  22. Lajtha, L. G., L. V. Pozzi, R. Schofield and M. Fox. Kinetic properties of haemopoietic stem cells. Cell Tissue Kinet. 2: 39, 1969.

    Google Scholar 

  23. Leguilly, Y., M. Simon, P. Lenoir and M. Bourel. Long-term culture of human adult liver cells: morphological changes related to in-vitro senescence and effect of donor’s age on growth potential. Gerontologia 19: 303, 1973.

    Article  CAS  Google Scholar 

  24. Martin, G. M., C. A. Sprague and C. J. Epstein. Replicative life-span of cultivated human cells. Effect of donor’s age, tissue, and genotype. Lab. Invest. 23: 86, 1970.

    PubMed  CAS  Google Scholar 

  25. Metcalf, D., and M. A. S. Moore. Haemopoietic Cells. Amsterdam: North-Holland, 1971.

    Google Scholar 

  26. Proukakis, C., J. E. Coggle and P. J. Lindop. Effect of age at exposure on the bone-marrow stem-cell population in relation to 30-day mortality in mice. In: Radiation Biology of the Fetal and Juvenile Mammal, edited by M. R. Sikov and D. O. Mahlum. U.S. Atomic Energy Commission Div. Tech. Inf. 1969, p. 603.

    Google Scholar 

  27. Schooley, J. C. and D. H. Y. Lin. Hematopoiesis and the colony-forming unit. In: Regulation of Erythropoiesis, edited by A. S. Gordon, M. Condorelli and C. Peschle. Milano: Il Ponte, 1972, p. 52. 32.

    Google Scholar 

  28. Siminovitch, L., J. E. Till and E. A. Mcculloch. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cellular Comp. Physiol. 64: 23, 1964.

    Article  CAS  Google Scholar 

  29. Smith, J. R. and L. Hayflick. Variation in the life-span of clones derived from human diploid cell strains. J. Cell Biol. 62: 48, 1974.

    Article  PubMed  CAS  Google Scholar 

  30. Stohlman, F., Jr., S. Ebbe, B. Morse, D. Howard and J. Dono-Van. Regulation of erythropoiesis XX. Kinetics of red cell production. Ann. N.Y. Acad. Sci. 149: 156, 1968.

    Article  PubMed  Google Scholar 

  31. Till, J. E., E. A. Mcculloch and L. Siminovitcx. A stochastic model of stem cell proliferation based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. U.S. 51: 29, 1964.

    Article  CAS  Google Scholar 

  32. Todaro, G. J., and H. Green, Serum albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Proc. Soc. Exptl. Biol. Med. 116: 688, 1964.

    CAS  Google Scholar 

  33. Van Bekkum, D. W., and W. W. H. Weyzen. Serial transfer of isologous hematopoietic cells in irradiated hosts. Pathol. Biol. Semaine Hop. 9: 888, 1961.

    Google Scholar 

  34. Vogel, H., M. Niewisch and G. Matioli, The self renewal probability of hemopoietic stem cells. J. Cellular Physiol. 72: 221, 1968.

    Article  CAS  Google Scholar 

  35. Vos, O., and M. J. A. S. Dolmans. Self-renewal of colony forming units (CFU) in serial bone marrow transplantation experiments. Cell Tissue Kinet. 5: 371, 1972.

    PubMed  CAS  Google Scholar 

  36. Worton, R. G., E. A. Mcculloch and J. E. Till. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J. Exptl. Med. 130: 91, 1969.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Federation of American Societies

About this chapter

Cite this chapter

Reincke, U., Burlington, H., Cronkite, E.P., Laissue, J. (1975). Hayflick’s hypothesis: an approach to in vivo testing. In: Thorbecke, G.J. (eds) Biology of Aging and Development. Faseb Monographs, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2631-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2631-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2633-5

  • Online ISBN: 978-1-4684-2631-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics