Skip to main content

Abstract

Despite its apparent simplicity, the spreading of molten solder on copper or on solder-coated copper to form a solder joint involves many complex physical processes. Poor solderability of electronic components, while infrequent in absolute numbers, can cause significant manufacturing difficulties when acceptable performance requires less than one failure in 106 joints. An assessment of solderability involves consideration of the entire soldering process including the details of the soldering equipment, the design of the joint geometry, and the wettability of the surfaces to be joined. Wettability involves consideration of the intrinsic rate and extent that solder can spread on a particular surface and is the primary focus of this chapter. Thus we need only consider macroscopically simple geometries of wetting; we will focus on the fundamental physical processes involved in solder wetting and spreading. The ultimate goal is to determine those processes that are most important in order to provide a scientific basis for the analysis of engineering problems in solder technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aksay, I. A., C. A. Hoge, and J. A. Pask. 1974. J Phys. Chem. 78:1178.

    Article  Google Scholar 

  • Ambrose, J. C, M. G. Nicholas, and A. M. Stoneham. 1992. Acta Metall. Mater. 40:2483.

    Article  Google Scholar 

  • Bailey, G. L. J., and H. C. Watkins. 1951–2. J Inst. Metals. 80:57.

    Google Scholar 

  • Boettinger, W. J., and C. A. Handwerker. 1992. Unpublished research.NIST

    Google Scholar 

  • Boettinger, W. J., C. A. Handwerker, and L. C. Smith. 1992. In: The Metal Science of Joining,NNN . Edited by M. J. Cieslak, J. H. Perepezko, Sc. Warrendale, PA.: The Minerals, Metals, and Materials Soc.

    Google Scholar 

  • Brochard, F. 1989. Langmuir. 5:432.

    Article  Google Scholar 

  • Butrymowiez, D. B. 1977. Diffusion in Cu Alloys. INCRA Monograph Series V. New York: The International Copper Research Assn., Inc.

    Google Scholar 

  • Cahn, J. W., W. J. Boettinger, and C. A. Handwerker. 1992. Unpublished research. NIST

    Google Scholar 

  • Chakrabarti, D. J., and D. E. Laughlin. 1984. Bull Alloy Phase Diagrams. 5:503–510.

    Article  Google Scholar 

  • Chang, Y. A., J. P. Neumann, A. Mikula, and D. Goldberg. 1979. Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems. INCRA Monograph Series VI. New York: The International Copper Research Assn., Inc.

    Google Scholar 

  • Chaudry, M. K., and G. M. Whitesides. 1992. Science. 256:1539.

    Article  Google Scholar 

  • de Gennes, P. G. 1985. Rev. Mod. Phys. 57:827.

    Article  Google Scholar 

  • Dinsdale, A. T. 1991. CALPHAD. 15:317.

    Article  Google Scholar 

  • Ehrhard, P., and S. H. Davis. 1991. J Fluid Mech. 229:365.

    Article  MATH  Google Scholar 

  • Fecht, H. J., M.-X. Zhang, Y. A. Chang, and J. H. Perepezko. 1989. Metall. Trans. 20A:795.

    Google Scholar 

  • Fidos, H., and H. Schreiner. 1970. Zeit. Metall. 61:225.

    Google Scholar 

  • Geist, H., and M. Kottke. 1988. IEEE Trans. on Components, Hybrids, and Manufacturing Tech. 11:270.

    Article  Google Scholar 

  • Hayes, F. H., H. L. Lukas, G. Effenberg, and G. Petzow. 1986. Z Metallkd. 77:749–754.

    Google Scholar 

  • Joanny, J. F., and P. G. de Gennes. 1984. J. Chem. Phys. 81:552.

    Article  Google Scholar 

  • Kao, R., and Y. A. Chang. 1992. Private communication. University of Wisconsin—Madison.

    Google Scholar 

  • Kattner, U. R. 1992. Unpublished research. MST.

    Google Scholar 

  • Kay, P. J., and C. A. Mackay. 1976. Trans. Inst. of Metal Finishing. 54:68.

    Google Scholar 

  • Kirkaldy, J. S., and D. J. Young. 1987. Diffusion in the Condensed State. London, U. K.: The Institute of Metals.

    Google Scholar 

  • Klein-Wassink, R. J. 1989. Soldering in Electronics. 2nd ed. Ayr, Scotland: Electrochemical Publications, Ltd.

    Google Scholar 

  • Latin, A. 1938. Trans Faraday Soc. 34(2): 1383.

    Google Scholar 

  • Lucey, G., J. Marshall, C. A. Handwerker, D. Tench, and A. Sunwoo. 1991. NEPCON 91 West Proc. Des Plaines, IL: Cahners Exposition Group. pp. 3–10.

    Google Scholar 

  • Marcotte, V. C, and K. Schroeder. 1984. In: Proceedings of the Thirteenth North American Thermal Analysis Society. Edited by A. R. McGhie. North American Thermal Analysis Society. p. 294.

    Google Scholar 

  • Mei, Z., A. J. Sunwoo, and J. W. Morris, Jr. 1992. Met. Trans. 23A:857.

    Google Scholar 

  • Muggianu, Y.-M., M. Gambino, and J.-P. Bros. 1975. J Chem. Phys. 72:85.

    Google Scholar 

  • Ngai, T. L., and Y. A. Chang. 1981. CALPHAD. 5:267.

    Article  Google Scholar 

  • Niemelä, J., G. Effenberg, K. Hack, and P. J. Spencer. 1986. CALPHAD. 10:77.

    Article  Google Scholar 

  • Perepezko, J. H., and W. J. Boettinger. 1983. In: Alloy Phase Diagrams. Edited by L. H. Bennett, T. B. Massalski, and B. C. Giessen. Mat. Res. Soc. Symp. Proc. Elsevier North Holland, NY. 19:223–240.

    Google Scholar 

  • Saunders, N., and A. P. Miodownik. 1990. Bull. Alloy Phase Diagrams. 11:278–287.

    Article  Google Scholar 

  • Schaefer, R. J., R. Jiggets, and F. S. Biancaniello. 1992. In: The Metal Science of Joining. Edited by M. J. Cieslak, J. H. Perepezko, S. Kang, and M. E. Glicksman. Warrendale, PA: The Minerals, Metals, and Materials Soc. p. 175.

    Google Scholar 

  • Schwaneke, A. E., W. L. Falke, and V. R. Miller. 1978. J Chem. and Eng. Data. 23:298.

    Article  Google Scholar 

  • Singler, T. J., J. A. Clum, and E. R. Prack. 1992. Trans. ASME. 114:128.

    Google Scholar 

  • Smith, G. C, and C. Lea. 1986. J Surf. Interf. Anal. 9:145.

    Article  Google Scholar 

  • Teppo, O., J. Niemelä, and P. Taskinen. 1988. Espoo, Finland: Helsinki Univ. of Technology.

    Google Scholar 

  • Thresh, H. R., and A. F. Crawley. 1970. Met. Trans. 1:1531.

    Article  Google Scholar 

  • Turkdogan, E. T., and S. Zador. 1961. J Iron and Steel Inst. 197:233.

    Google Scholar 

  • Yost, F. G., and A. D. Romig. 1988. Mat. Res. Soc. Symp. 108:385.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Van Nostrand Reinhold

About this chapter

Cite this chapter

Boettinger, W.J., Handwerker, C.A., Kattner, U.R. (1993). Reactive Wetting and Intermetallic Formation. In: Yost, F.G., Hosking, F.M., Frear, D.R. (eds) The Mechanics of Solder Alloy Wetting and Spreading. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1440-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1440-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1442-4

  • Online ISBN: 978-1-4684-1440-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics