Skip to main content

The Role of the Golgi Apparatus in the Biosynthesis of Natural Polymer Systems with Particular Reference to Cellulose

  • Chapter
Cellulose and Other Natural Polymer Systems

Abstract

In its accepted role as the site of glycosylation and sulfation, the Golgi apparatus is involved in the biosynthesis of most natural polymers (for reviews, see Whaley, 1975; Northcote, 1979). Synthesis occurs in the context of a directed membrane flow throughout the endomembrane system (Mom? et al, 1971; Whaley et al., 1971; Northcote, 1974) —from the nuclear envelope to the endoplasmic reticulum to the Golgi apparatus to the plasma membrane—and is accompanied by membrane differentiation that can be observed as changes in the thickness (Grove et al., 1968) and composition (Keenan and Morré, 1970) of the membrane (see Morré, 1977). Consequently, the Golgi apparatus is a site for the synthesis and modification of membrane as well as a site for the synthesis of sugar-containing polymers. These two functions typically occur simultaneously, as illustrated in the formation of the cell plate from Golgi-derived vesicles: the contents of the vesicles form the middle lamella of the new transverse wall, while the vesicle membrane itself becomes the new plasma membrane of the daughter cells (see Whaley, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albersheim, P., Bauer, W. D., Keegstra, K., Talmadge, K. W., 1973, The structure of the wall of suspension-cultured sycamore cells, in: Biogenesis of Plant Cell Wall Polysaccharides ( F. Loewus, ed.), pp. 114–147, Academic Press, New York.

    Google Scholar 

  • Allen, D. M., Northcote, D. H., 1975. The scales of Chrysochromulina chiton. Protoplasma 83: 389.

    Article  CAS  Google Scholar 

  • Balasubramanian, A. S., Bachhawat, B. K., Sulfate metabolism in brain. Brain Res. 20: 341.

    Google Scholar 

  • Beisson, J., Lefort-Tran. M., Pouphile, M., Rossignol, M., Satir, B., 1976, Genetic analysis of membrane differentiation in Paramecium: Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J. Cell Biol. 69: 126

    CAS  Google Scholar 

  • Beisson, J., Cohen, J., Lefort-Tran, M., Pouphile, M., Rossignol, M., 1980, Control of membrane fusion in exocytosis: Physiological studies on a Paramecium mutant blocked in the final step of the tricocyst extrusion process. J. Cell Biol. 85: 213.

    Article  Google Scholar 

  • Bowles, D. J., Northcote, D. H., 1974, The amounts and rates of export of polysaccharides found within the membrane system of maize root cells. Biochem. J. 142: 139.

    CAS  Google Scholar 

  • Brown, R. M., Jr., 1969, Observations on the relationship of the Golgi apparatus to wall formation in the marine Chrysophycean alga, Pleurochrysis scherffelii Pringsheim. J. Cell Biol. 41: 109.

    Article  Google Scholar 

  • Brown, R. M., Jr., Franke, W. W., 1971, A microtubular crystal associated with the Golgi field of Pleurochrysis scherffelii. Planta 96: 354.

    Article  Google Scholar 

  • Brown, R. M., Jr., Montezinos, D., 1976, Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 73: 143.

    Article  CAS  Google Scholar 

  • Brown, R. M., Jr., Romanovicz, D. K., 1976, Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. I. Role of the endomembrane system in scale assembly and exocytosis. Appl Polymer Symp. 28: 537.

    CAS  Google Scholar 

  • Brown, R. M., Jr., Willison, J. H. M., 1977, Golgi apparatus and plasma membrane involvement in secretion and cell surface deposition, with special emphasis on cellulose biogenesis in: International Cell Biology, 1976–1977 (B. R. Brinkley, K. R. Porter, eds.), pp. 267–283, The Rockefeller University Press, New York.

    Google Scholar 

  • Brown, R. M., Jr., Franke, W. W., Kleinig, H., Sitte, P., 1969, Cellulosic wall component produced by the Golgi apparatus of Pleurochrysis scherffelii. Science 166: 894.

    Article  CAS  Google Scholar 

  • Brown, R. M., Jr., Franke, W. W., Kleinig, H., Falk, H., Sitte, P., 1970, Scale formation in Chrysophycean algae, I. Cellulosic and noncellulosic wall components made in the Golgi apparatus. J. Cell Biol. 45: 246.

    Article  CAS  Google Scholar 

  • Brown, R. M. Jr., Herth, W., Franke, W. W., Romanovicz, D. K., 1973, The role of the Golgi apparatus in the biosynthesis and secretion of a cellulosic glycoprotein in Pleurochrysis: A model system for the synthesis of structural polysaccharides, in: Biogenesis of Plant Cell Wall Polysaccharides ( F. Loewus, ed.), pp. 207–257, Academic Press, New York.

    Google Scholar 

  • Brown, R. M., Jr., Willison, J. H. M., Richardson, C. L., 1976, Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73: 4565.

    Article  CAS  Google Scholar 

  • Caufield, D. F., 1971, Crystallite sizes in wet and dry Valonia ventricosa. Text. Res. J. 41: 267.

    Google Scholar 

  • Chrispeels, M. J., 1976, Biosynthesis, intracellular transport, and secretion of extracellular macromolecules. Annu. Rev. Plant Physiol. 24: 19.

    Article  Google Scholar 

  • Colvin, J. R., 1972, The structure and biosynthesis of cellulose. CRC Crit. Rev. Macromol. Sci. 1: 47.

    CAS  Google Scholar 

  • Da Silva, P. P., Nagueira, L., 1977, Membrane fusion during secretion: A hypothesis based on electron microscope observation of Phytophthora palmisora zoospores during encystment. J. Cell Biol. 73: 161.

    Article  Google Scholar 

  • Dobberstein, B., Kiermayer, O., 1972, Das Auftreten eines besondern Typs von Golgivesikeln wahrend der SekundSrwandbildung von Micrasterias denticulata Breb. Protoplasma 75: 185.

    Article  Google Scholar 

  • Franke, W. W., 1970, Central dilations in maturing Golgi cisternae—a common structural feature among plant cells?. Planta 90: 370.

    Article  Google Scholar 

  • Giddings, T. H., Jr., Brower, D. L., Staehelin, L. A., 1980, Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in the primary and secondary cell walls. J. Cell Biol. 84: 327.

    Article  Google Scholar 

  • Green, J. C., Jennings, D. H., 1967, A physical and chemical investigation of the scales produced by Golgi apparatus within and found on the surface of cells of Chrysochromulina chiton Parke et Manton. J. Exp. Bot. 18: 359.

    Article  CAS  Google Scholar 

  • Green, P. B., 1962, Mechanism for plant cellular morphogenesis. Science 138: 1404.

    Article  CAS  Google Scholar 

  • Grove, S. N. Bracker, C. E., Morré, D. J., 1968, Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science 161: 171.

    Article  CAS  Google Scholar 

  • Hanker, J. S., Thornburg, L. P., Yates, P. E., Romanovicz, D. K., 1975, The demonstration of arylsulfatases with 4-nitro-1,2-benzenediol mono(hydrogen sulfate) by the formation of osmium blacks at the site of copper capture. Histochemistry 41: 207.

    Article  CAS  Google Scholar 

  • Harris, P. J., Northcote, D. H., 1970, Patterns of polysaccharide biosynthesis in differentiating cells of maize root tips. Biochem. J. 120: 479.

    CAS  Google Scholar 

  • Heath, I. B., 1974, A unified hypothesis for the role of membrane-bound enzyme complexes and microfibrils in plant cell wall synthesis. J. Theor. Biol. 48: 4545.

    Article  Google Scholar 

  • Herth, W., Franke, W. W., Stadler, J., Bittiger, H., Keilich, G., Brown, R. M., Jr., 1972, Further characterization of the alkali-stable material from the scales of Pleurochrysis scherffelii: A cellulosic glycoprotein. Planta 105: 79.

    Article  CAS  Google Scholar 

  • Heyn, A. N. J., 1965, Crystalline state of cellulose in fresh and dried mature cotton fiber from unopened bolls as studied by X-ray diffraction. J. Polym. Sci. A3: 1251.

    CAS  Google Scholar 

  • Hibberd, D. J., 1976, The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): A survey with new observations on the structure of the Chrysophyceae. Bot. J. Linn. Soc. 72: 55.

    Article  Google Scholar 

  • Hoffstein, S., Goldstein, I. M., Weissmann, G., 1977, Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. J. Cell Biol. 73: 242.

    Article  CAS  Google Scholar 

  • Jaeken, L., Thines-Sempoux, D., 1981, A three-dimensional study of organelle interrelationships in regenerating rat liver. 6. Golgi apparatus. Cell Biol. Intl. Reports 5: 261.

    Article  CAS  Google Scholar 

  • Kavookjian, A. M. A., Brown, R. M., Jr., 1978, Antigenic properties of the Golgi-derived scales of Pleurochrysis scherffelii. Cytobios 23: 45.

    CAS  Google Scholar 

  • Keegstra, K., Talmadge, K., Bauer, W. D., Albersheim, P., 1973, The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of macromolecular components. Plant Physiol. 51: 188.

    Article  CAS  Google Scholar 

  • Keenan, T. W., Morré, D. J., 1970, Phospholipid class and fatty acid composition of Golgi aparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9: 19.

    Article  CAS  Google Scholar 

  • Kiermayer, O., 1968, The distribution of microtubules in differentiating cells of Micrasterias denticulata Breb. Planta 83: 223.

    Article  Google Scholar 

  • Kiermayer, O., Dobberstein, B., 1973, Membrankomplexe dictyosomaler Herkunft als “Matrizen” fur die extraplasmatische Synthesis und Orientierung von Microfibrillen. Protoplasma 77: 437.

    Article  Google Scholar 

  • Kiermayer, O., Sleytr, U. B., 1979, Hexagonally ordered “rosettes” of particles in the plasma membrane of Micrasterias denticulata Br£b. and their significance for microfibril formation and orientation. Protoplasma 101: 133.

    Article  Google Scholar 

  • Klaveness, D., 1973, The microanatomy of Calyptrosphaera sphaeroidea, with some supplementary observations of the motile stage of Coccolithus pelagicus. Norw. J. Botn. 20: 151.

    Google Scholar 

  • Kristen, U., 1980, Endoplasmic reticulum-dictyosome interconnections in ligula cells of Isoetes lacustris. Eur. J. Cell Biol. 23: 16.

    CAS  Google Scholar 

  • Lamport, D. T. A., 1970, Cell wall metabolism. Annu. Rev. Plant Physiol. 21: 235.

    Article  CAS  Google Scholar 

  • Lamport, D. T. A., 1973, The glycopeptide linkages of extensin: galactosyl serine and 0-1- arabinosyl hydroxyproline, in: Biogenesis of Plant Cell Wall Polysaccharides ( F. Loewus, ed.). pp. 149–164, Academic Press, New York.

    Google Scholar 

  • Leadbeater, B. S. C., 1972, Fine structural observations on six new species of Chrysochromulina (Haptophyceae) from Norway with preliminary observations on scale production in C. microcylindra sp. Nov. Sarsia 49: 65.

    Google Scholar 

  • Liang, C. Y., Marchessault, R. H., 1959, Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polym. Sci. 37: 385.

    Article  CAS  Google Scholar 

  • Lloyd, A. G., Dodgson, K. S., Price, R. G., Rose, F. A., 1961, Infrared studies on sulfate esters. I. Polysaccharide sulfates. Biochim. Biophys. Acta 46: 108.

    Article  CAS  Google Scholar 

  • Manton, I., 1964, Observations with the electron microscope on the division cycle in the flagellate Prymnesium parvum Carter. J. R. Microsc. Soc. 83: 317.

    Article  Google Scholar 

  • Manton, I., 1966, Observations on scale production in Prymnesium parvum. J. Cell Sci. 1: 375.

    CAS  Google Scholar 

  • Manton, I., 1967a, Further observations on the fine structure of Chrysochromulina chiton with special reference to the haptonema, “peculiar” Golgi structure and scale production. J. Cell Sci. 2: 265.

    CAS  Google Scholar 

  • Manton, I., 1967b, Further observations on scale formation in Chrysochromulina chiton. J. Cell Sci. 2: 411.

    CAS  Google Scholar 

  • Manton, I., 1968, Further observations on the microanatomy of the haptonema in Chrysochromulina chiton and Prymnesium parvum. Protoplasma 66: 35.

    Article  Google Scholar 

  • Manton, I., 1972, Observations on the biology and microanatomy of Chrysochromulina megacylindra Leadbeater. Br. Phycol. J. 7: 235.

    Article  Google Scholar 

  • Manton, I., Leedale, G. F., 1963, Observations on the microanatomy of Crystallolithus hyalinus Gaarder and Morkali. Arch. Mikrobiol. 47: 115.

    Article  Google Scholar 

  • Marker, A. F. H., 1965, Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum. J. Mar. Biol. Assoc. U. K. 45: 755.

    Article  CAS  Google Scholar 

  • Marrinan, H. J., Mann, J., 1956, Infrared spectra of the crystalline modifications of cellulose. J. Polym. Sci. 21: 301.

    Article  Google Scholar 

  • McCall, E. R., Morris, N. M., Tripp, V. W., O’Conner, R. T., 1971, Low temperature infrared absorption spectra of cellulosics. Appl. Spectrosc. 25: 196.

    Article  CAS  Google Scholar 

  • Mitchell, A. J., Scurfield, G., 1970, An assessment of infrared spectra as indicators of fungal cell wall composition. Aust. J. Biol. Sci. 23: 345.

    Google Scholar 

  • Moestrup, O., 1974a, Scale formation: A special function of the Golgi apparatus in algae, in: Proceedings of the Eighth International Congress on Electron Microscopy ( J. V. Sanders, D. J. Goodchild, eds.), pp. 564–565, Australian Academy of Science, Canberra.

    Google Scholar 

  • Moestrup, O., 1974b, Ultrastructure of the scale-covered zoospores of the green alga Chaetosphaeridium, a possible ancestor of the higher plants and bryophytes. Biol. J. Linn. Soc. 6: 111.

    Article  Google Scholar 

  • Moestrup, O., Thomsen, H. A., 1974, An ultrastructural study of the flagellate Pyramimonas orientalis with particular emphasis on Golgi apparatus activity and the flagellar apparatus. Protoplasma 81: 247.

    Article  Google Scholar 

  • Moestrup, O., Walne, P. L., 1979, Studies on scale morphogenesis in the Golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). J. Cell Sci. 36: 437.

    CAS  Google Scholar 

  • Mollenhauer, H. H., Morré, D. J., 1974. Polyribosomes associated with the Golgi apparatus. Protoplasma 79: 333.

    Article  CAS  Google Scholar 

  • Morré, D. J., 1977, Membrane differentiation and the control of secretion: A comparison of plant and animal Golgi apparatus, in: International Cell Biology, 1976–1977 ( B. R. Brinkley, K. R. Porter, eds.), pp. 293 - 303, The Rockefeller University Press, New York.

    Google Scholar 

  • Morré, D. J., Mollenhauer, H. H., Bracker, C. E., 1971, Origin and continuity of Golgi apparatus, in: Origin and Continuity of Cell Organelles ( J. Reinert, H. Ursprung, eds.), pp. 82–126, Springer-Verlag, New York.

    Google Scholar 

  • Mueller, S. C., Brown, R. M., Jr., 1980, Evidence for an intramembraneous component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84: 315.

    Article  CAS  Google Scholar 

  • Mueller, S., Brown, R. M., Jr., Scott, T. K., 1976, Cellulosic microfibrils: Nascent stages of synthesis in a higher plant cell. Science 194: 949.

    Article  CAS  Google Scholar 

  • Neutra, M., Leblond, C. P., 1966, Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose H3. J. Cell Biol. 30: 119.

    Article  CAS  Google Scholar 

  • Newcomb, E. H., 1969, Plant microtubules. Annu. Rev. Plant Physiol. 20: 253.

    Article  CAS  Google Scholar 

  • Northcote, D. H., 1972, Chemistry of the plant cell wall. Annu. Rev. Plant Physiol. 23: 113.

    Article  CAS  Google Scholar 

  • Northcote, D. H., 1974, Complex envelope system: Membrane systems of plant cells. Philos. Trans. R. Soc. London B Ser. 268: 119.

    Article  CAS  Google Scholar 

  • Northcote, D. H., 1979, The involvement of the Golgi apparatus in the biosynthesis and secretion of glycoproteins and polysaccharides, in: Biomembranes, Vol. 10 ( L. A. Manson, ed.), pp. 51–76, Plenum Press, New York.

    Google Scholar 

  • Northcote, D. H., Pickett-Heaps, J. D., 1966, A function of the Golgi apparatus in polysaccharide synthesis and transport in the root cap cells of wheat. Biochem. J. 98: 159.

    CAS  Google Scholar 

  • Novikoff, A. B., Novikoff, P. M., 1977, Cytochemic contributions to differentiating GERL from the Golgi apparatus. Histochem. J. 9: 525.

    Article  CAS  Google Scholar 

  • Novikoff, P. M., Novikoff, A. B., Quintana, N., Hauw, J. J., 1971, Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick and thin section cytochemistry. J. Cell Biol. 50: 859.

    Article  CAS  Google Scholar 

  • Paradies, H. H., Goke, L., Werz, G., 1977, On the spatial structure of plant cell wall protein: Secondary structure of cell wall protein from Acetabularia. Protoplasma 93: 249.

    Article  CAS  Google Scholar 

  • Parke, M., Rayns, D. G., 1964, Studies on marine flagellates. VII. Nephroselmis gilva sp. nov. and some allied forms. J. Mar. Biol. Assoc. U. K. 44: 209.

    Article  Google Scholar 

  • Pickett-Heaps, J. D., 1967, The effcct of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation, and distribution of cytoplasmic microtubules. Dev. Biol. 15: 206.

    Article  CAS  Google Scholar 

  • Pienaar, R. N., 1969, The fine structure of Hymenomonas (Cricosphaera) carterae. II. Observations on scale and coccolith production. J. Phycol. 5: 321.

    Article  Google Scholar 

  • Pienaar, R. N., 1971, Coccolith production in Hymenomonas carterae. Protoplasma 73: 217.

    Article  Google Scholar 

  • Pienaar, R. N., 1976a, The microanatomy of Hymenomonas lacuna sp. nov. (Haptophyceae), J. Mar. Biol. Assoc. U. K. 56: 1.

    Article  Google Scholar 

  • Pienaar, R. N., 1976b, The rhythmic production of body covering components in the Haptophycean flagellate Hymenomonas carterae, in: The Mechanisms of Mineralization in the Invertebrates and Plants ( N. Watabe, K. M. Wilbur, eds.), pp. 203–229, University of South Carolina Press, Columbia.

    Google Scholar 

  • Preston, R. D., 1964, Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth, in: Formation of Wood in Forest Trees ( M. H. Zimmerman, ed.), pp. 169–188, Academic Press, New York.

    Google Scholar 

  • Preston, R. D., 1971, Negative staining and cellulose microfibril size. J. Microsc. 93: 7.

    Article  Google Scholar 

  • Preston, R. D., 1974, The Physical Biology of Plant Cell Walls, Chapman and Hall, London.

    Google Scholar 

  • Ray, P. M., Shininger, T., Ray, M., 1969, Isolation of glucan synthetase particles from plant cells and identification with Golgi membranes. Proc. Natl. Acad. Sci. U.S.A. 64: 605.

    Article  CAS  Google Scholar 

  • Robinson, D. G., 1980, Dictyosome-endoplasmic reticulum associations in higher plant cells? A serial-section analysis. Eur. J. Cell Biol. 23: 22.

    CAS  Google Scholar 

  • Robinson, D. G., Preston, R. D., 1971, Fine structure of swarmers of Cladophora and Chaetomorpha. I. The plasmalemma and Golgi apparatus in naked swarmers. J. Cell Sci. 9: 581.

    CAS  Google Scholar 

  • Robinson, D. G., Preston, R. D., 1972, Plasmalemma structure in relation to microfibril biosynthesis in Oocystis. Planta 104: 234.

    Article  Google Scholar 

  • Romanovicz, D. K., 1981, Scale formation in flagellates, in: Cytomorphogenesis in Plants ( O. Kiermayer, ed.), pp. 27–62, Springer-Verlag, Vienna.

    Chapter  Google Scholar 

  • Romanovicz, D. K., Brown, R. M., Jr., 1976, Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. II. Scale composition and supramolecular structure. Appl. Polymer Symp. 28: 587.

    CAS  Google Scholar 

  • Satir, B., Schooley, C., Satir, P., 1973, Membrane fusion in a model system. J. Cell Biol. 56: 153.

    Article  CAS  Google Scholar 

  • Shore, G., Maclachlan, G. A., 1975, The site of cellulose synthesis: Hormone treatment alters the intracellular location of alkali-insoluble 1,4-glucan (cellulose) synthesis. J. Cell Biol. 64: 557.

    Article  CAS  Google Scholar 

  • Slaby, F., Slaby, M., 1979, A new theory of the structure and function of the Golgi complex in protein secreting cells: Each stack of cisternae is a rotating, spiralled membrane-bound tube. J. Cell Biol. 83: 431a.

    Google Scholar 

  • Van der Woude, W. J., Lembi, C. A., Morré, D. J., Kindinger, J. I., Ordin, L., 1974, ß-Glucan synthetases of plasma membrane and Golgi apparatus from onion stem, Plant Physiol. 54: 333.

    Article  Google Scholar 

  • Villemez, C. L., Jr., McNab, J. M., Albersheim, P., 1968, Formation of plant cell wall polysaccharides. Nature (London) 218: 878.

    CAS  Google Scholar 

  • Whaley, W. G., 1975, The Golgi Apparatus (Cell Biology Monographs, Vol. 2 ), Springer-Verlag, New York.

    Google Scholar 

  • Whaley, W. G., Dauwalder, M., Kephart, J., 1971, Assembly, continuity, and exchanges in certain cytoplasmic membrane systems, in: Origin and Continuity of Cell Organelles ( J. Reinert, H. Ursprung, eds.), pp. 1–45, Springer-Verlag, New York.

    Google Scholar 

  • Willison, J. H. M., 1976, An examination of the relationship between freeze-fractured plasmalemma and cell-wall microfibrils. Protoplasma 88: 187.

    Article  Google Scholar 

  • Willison, J. H. M., Cocking, E. C., 1975, Microfibril synthesis at the surfaces of isolated tobacco mesophyll protoplasts, a freeze-etch study. Protoplasma 84: 147.

    Article  Google Scholar 

  • Wooding, F. B. P., 1968, Radioautographic and chemical studies of incorporation into sycamore vascular tissue walls. J. Cell Sci. 3: 71.

    CAS  Google Scholar 

  • Wright, K., Northcote, D. H., 1976, Identification of ß-glucan chains as a part or a fraction of slime synthesized within the dictyosomes of maize root caps. Protoplasma 88: 225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Romanovicz, D.K. (1982). The Role of the Golgi Apparatus in the Biosynthesis of Natural Polymer Systems with Particular Reference to Cellulose. In: Brown, R.M. (eds) Cellulose and Other Natural Polymer Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1116-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1116-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1118-8

  • Online ISBN: 978-1-4684-1116-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics