Skip to main content

Role of Rheology in Film Blowing and Sheet Extrusion

  • Chapter
Melt Rheology and Its Role in Plastics Processing

Abstract

The essential elements of the film blowing process are illustrated in Figure 17–1. An extruder melts the resin and forces it through a screen pack and an annular die. The extruded melt, in the form of a tube, flows upward under the influence of a vertical, “machine direction” force, applied by means of nip rolls some distance above the die. There is an overall stretching of the polymer in the machine direction, and the ratio of the linear speed of the film through the nip rolls, divided by the average melt velocity at the die lips, is called the “draw down ratio” (DDR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Steward and A. W. Cline, “Barrier screw hikes quality of HMW-HDPE blown film,” Plastics Engineering, Sept. 1987, p. 45.

    Google Scholar 

  2. J. P. Christiano, SPE Tech. Papers 35:96 (1989); Plastics Eng., June 1989, p. 57.

    Google Scholar 

  3. S. J. Kurtz and L. S. Scarola, Plastics Engineering, June 1982, p. 45.

    Google Scholar 

  4. J. C. Miller, R. Wu and G. S. Cieloszyk, Plastics Engineering, Jan. 1986, p. 37.

    Google Scholar 

  5. B. Proctor, “Flow analysis in extrusion dies,” SPE Journ. 28, Feb. 1972, p. 34.

    Google Scholar 

  6. J. Wortberg and K. P. Schmitz, Kunststoffe 72:198 (1982).

    Google Scholar 

  7. P. Saillard and J. F. Agassant, Polym. Proc. Eng. 2:37 (1984).

    Google Scholar 

  8. J. Vlcek, V. Krai and K. Kouba, Plast. Rubber Proc. App. 4:3099 (1984).

    Google Scholar 

  9. C. Rauwendaal, Polym. Eng. Sci. 27:186 (1987).

    Article  Google Scholar 

  10. J. Vlcek, J. Vlachopoulos and J. Perdikoulias, Intern. Polym. Proc. II 3/4, 174 (1988).

    Google Scholar 

  11. J. Perdikoulias, J. Vlcek and J. Vlachopoulos, Adv. Polym. Technol. 7, no. 3, 333 (1987).

    Article  Google Scholar 

  12. D. M. Kalyon, J. S. Yu and C.-C. Du, Polym. Proc. Eng. 5:179 (1987).

    Google Scholar 

  13. P. C. Gates, TAPPI J. 70 (no. 6):38 (1987).

    Google Scholar 

  14. F. N. Cogswell, Polymer Melt Rheology, John Wiley & Sons, New York, 1981, p. 101.

    Google Scholar 

  15. S. J. Kurtz, in Advances in Rheology, vol. 3, p. 399, Edited by B. Mena et al., UNAM, Mexico City, 1984 (Proc. IXth Intern. Congr. Rheol.).

    Google Scholar 

  16. S. J. Kurtz, T. R. Blakeslee, III and S. S. Scarola, U.S. Patent 4,282,177 (1981).

    Google Scholar 

  17. “Heated die-lip system increases LLDPE film productivity,” Modern Plastics, Feb. 1987, p. 82.

    Google Scholar 

  18. A. Rudin, J. E. Blacklock, S. Nam and A. T. Worm, SPE Tech. Papers 32:1154 (1986).

    Google Scholar 

  19. A. J. Athey, R. C. Thann, R. D. Souffle and G. R. Chapman, SPE Tech. Papers, 32:1149 (1986).

    Google Scholar 

  20. A. V. Ramamurthy, J. Rheol. 30:337 (1986).

    Article  Google Scholar 

  21. A. V. Ramamurthy, U.S. Patent 4,552,712 (1985).

    Google Scholar 

  22. A. V. Ramamurthy, U.S. Patent 4,554,120 (1985).

    Google Scholar 

  23. A. V. Ramamurthy, U. S. Patent 4,522,776 (1985).

    Google Scholar 

  24. M. Rokudai, S. Mihara and T. Fujiki, J. Appl. Polym. Sci. 23:3289 (1979).

    Article  Google Scholar 

  25. H. Münstedt, Colloid Poly. Sci. 259:966 (1981).

    Article  Google Scholar 

  26. R. Farber and J. Dealy, Polym. Eng. Sci. 14:435 (1974).

    Article  Google Scholar 

  27. T. A. Huang and G. A. Campbell, Adv. Polym Technol. 5 (3):181 (1985).

    Article  Google Scholar 

  28. R. K. Gupta, A. B. Metzner and K. F. Wissbrun, Polym. Eng. Sci. 22:174 (1982).

    Article  Google Scholar 

  29. B. Cao and G. A. Campbell, Intern. J. Polym. Proc. 4:114 (1989).

    Google Scholar 

  30. H. O. Corbett, U.S. Patent No. 3,167,814 (1965).

    Google Scholar 

  31. F. J. Herrington, U.S. Patent No. 4,118,453 (1978).

    Google Scholar 

  32. D. N. Jones and S. J. Kurtz, U.S. Patent 4,330,501 (1982).

    Google Scholar 

  33. T. Kanai and J. L. White, J. Polym. Eng. 5:135 (1985).

    Google Scholar 

  34. J. Meissner, Pure Appl. Chem. 42:553 (1975).

    Article  Google Scholar 

  35. H. H. Winter, Pure Appl. Chem. 55:943 (1983).

    Article  Google Scholar 

  36. H. M. Laun and H. Schuch, J. Rheol. 33:119 (1989).

    Article  Google Scholar 

  37. C. D. Han and T. H. Kwack, J. Appl. Polym. Sci. 28:3399 (1983).

    Article  Google Scholar 

  38. T. H. Kwack and C. D. Han, J. Appl. Polym. Sci. 28:3419 (1983).

    Article  Google Scholar 

  39. C. D. Han and J. Y. Park, J. Appl. Polym. Sci. 19:3291 (1975).

    Article  Google Scholar 

  40. C. D. Han and R. Shetty, IEC Fund. 16:49 (1977).

    Article  Google Scholar 

  41. W. Minoshima and J. L. White, J. Non-Newt. Fl. Mech. 19:275 (1986).

    Article  Google Scholar 

  42. J. L. White and H. Yamane, Pure Appl. Chem. 59:193 (1987).

    Article  Google Scholar 

  43. J. J. Cain and M. M. Denn, Polym. Eng. Sci. 28:1527 (1988).

    Article  Google Scholar 

  44. A. Ghijsels, J. J. S. M. Ente and J. Raadsen, in Integration of Fundamental Polymer Science and Technology-2, Ed. by P. J. Lemstra and L. A. Kleintjens, Elsevier Applied Science, London and New York, 1988, p. 466.

    Chapter  Google Scholar 

  45. A. Furumiya, Y. Akana, Y. Ushida, T. Masuda and A. Nakajima, Pure Appl. Chem. 57:823 (1985).

    Article  Google Scholar 

  46. T. Dobroth and L. Erwin, Polym. Eng. Sci. 26:62 (1986).

    Article  Google Scholar 

  47. W. F. Allen, SPE Tech. Papers 33:211 (1987).

    Google Scholar 

  48. T. Dobroth and L. Erwin, SPE Tech. Papers 32:843 (1986).

    Google Scholar 

  49. R. Edwards, TAPPI J. 70, no. 9:139 (1987).

    Google Scholar 

  50. E. J. Kaltenbacher, J. K. Lund and R. A. Mendelson, SPE Journ., Nov. 1967, p. 55.

    Google Scholar 

  51. R. L. Ballman, Rheol. Acta 4:137 (1965).

    Article  Google Scholar 

  52. A. Co, V. Iyengar and C. M. Lin, Xth Int. Congr. Rheol. 1:278 (1988).

    Google Scholar 

  53. C. J. S. Petrie and M. M. Denn, A.I.Ch.E.J. 22:209 (1976).

    Article  Google Scholar 

  54. N. R. Anturkar and A. Co, J. Non-Newt. FL Mech. 28:287 (1988).

    Article  Google Scholar 

  55. P. J. Lucchesi, E. H. Roberts and S. J. Kurtz, Plastics Engineering, May 1985, p. 87.

    Google Scholar 

  56. P. J. Lucchesi, E. H. Roberts and S. J. Kurtz, U.S. Patent 4,486,377 (1984).

    Google Scholar 

  57. E. H. Roberts, P. J. Lucchesi and S. J. Kurtz, Adv. Polym. Technol. 6:65 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1990). Role of Rheology in Film Blowing and Sheet Extrusion. In: Melt Rheology and Its Role in Plastics Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9738-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9738-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9740-7

  • Online ISBN: 978-1-4615-9738-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics