Skip to main content

Temperature Damage of the Oxygen-Evolving Complex in Thylakoid Membrane Particles

  • Chapter
Electromagnetic Fields and Biomembranes
  • 149 Accesses

Abstract

The temperature sensitivity of photosynthetic processes has been known for a long time. Its complexity is also well known. In the physiological range 10 to 40° C the temperature response reflects Boltzmann’s factor of kinetic process and is reversible (1). Above these temperatures irreversible effects result due to thermal denaturation (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

PS II OEP:

oxygen-evolving subchloroplast particles

BQ:

1 ,4 benzoquinone

DPC:

diphenylcarbazide

PS I, II:

photosystem I, II

LHC II:

light harvesting chl a/b complex of PS II

chl:

chlorophyll

References

  1. C, Sundby, A. Melis, P. Maenpaa and B. Anderson, Temperature-dependent changes in the antennae size of Photosystem II. Reversible conversion of Photosystem II to Photosystem II, Biochim. Biophys.Acta, 851: 475–483 (1986).

    Google Scholar 

  2. N. I. Bishop, R. Lumry and J. D. Spikes, The mechanism of the photochemical activity of isolated chloroplasts. I. Effect of temperature, Arch.Biochim.Biophys,, 58: 1–18 (1955).

    Article  Google Scholar 

  3. S. Katoh and A. San Pietro, Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts, Arch.Biochim.Biophys., 122: 144–152 (1967).

    Google Scholar 

  4. K. Gounaris, A. Brain, A. J. Quinn and W. P. Williams, Structural and functional changes associated with heat-induced phase separations of non-bilayer lipids in chloroplast thylakoid membranes, FEBS lett, 153: 47–52 (1983).

    Article  Google Scholar 

  5. U. Schreiber and P. A. Dumond, Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level, Biochim.Biophys.Acta, 502: 138–151 (1978).

    Article  Google Scholar 

  6. K. Gounaris, A. Brain, P. J. Quinn and W, P. Williams, Structural reorganization of chloroplast thylakoid membranes in response to heat stress, Biochim.Biophys.Acta, 766: 198–208 (1984).

    Article  Google Scholar 

  7. C. H. Krauce and K. A. Santarius, Relative themostability of chloroplast envelope, Planta, 127: 285–299 (1975).

    Article  Google Scholar 

  8. Y. Yamamoto, T. Ueda, H. Shinkai, M. Nishimura, Preparation of O2-evolving photosystem II from spinach, Biochim.Biophys.Acta, 679: 347–350 (1985).

    Google Scholar 

  9. D. I. Arnon, Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris, Plant Physiol., 24: 1–15 (1949).

    Article  Google Scholar 

  10. T. G. Dunahay, L, A. Staehelin, M. Seibert, P. D. Ogilvie and S. P. Berg, Structural, biochemical and biophysical characterization of four oxygen- evolving photosystem IT preparations from spinach, Biochim.Biophys. Acta, 764: 179–193 (1984).

    Google Scholar 

  11. E. Weis, The influence of metal kations and pH on the heat sensitivity of photosynthetic oxygen evolution and chlorophyll fluorescence in spinach chloroplasts, Planta, 154: 41–47 (1982).

    Article  Google Scholar 

  12. C. H. Krause and E. Weis, Chlorophyll fluorescence as a tool in plant physiology. 11. Interpretation of fluorescence signals, Photosynth.Res. 5: 139–157 (1984).

    Article  Google Scholar 

  13. P. Mohanity, S. Hoshina and D. Fork, Energy transfer from phycobilins to chlorophyll a in heat stressed cells of Anacytis nidulans, Photochem. Photobiol., 41:589–596 (1986),

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Busheva, M., Popova, A. (1988). Temperature Damage of the Oxygen-Evolving Complex in Thylakoid Membrane Particles. In: Markov, M., Blank, M. (eds) Electromagnetic Fields and Biomembranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9507-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9507-6_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9509-0

  • Online ISBN: 978-1-4615-9507-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics