Skip to main content

Abstract

Mounting experimental observation of SERS has led to considerable theoretical efforts towards the understanding of various aspects of this phenomenon. The existing theories should be tested by their ability to explain the following important properties of SERS: (1) The Raman intensity of adsorbed molecules is enhanced by a factor of 105–106 compared to that of free molecules, (2) The degree of the enhancement depends on the excitation energy and also on the properties of the substrate metal, (3) The enhanced Raman scattering spectra are accompanied by a broad continuum spectrum, (4) The roughness of a metal surface plays a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. E. Furtak and J. Reyes, A critical analysis of theoretical models for the giant Raman effect from adsorbed molecules, Surf. Sci. 93:351 (1980).

    Article  ADS  Google Scholar 

  2. F. W. King, R. P. Van Duyne and G. C. Schatz, Theory of Raman scattering by molecules adsorbed on electrode surfaces, J. Chem. Phys. 69:4472 (1978).

    Article  ADS  Google Scholar 

  3. S. Efrima and H. Metiu, Classical theory of light scattering by an adsorbed molecule I. Theory, J. Chem. Phys. 70:1602 (1979)

    Article  ADS  Google Scholar 

  4. S. Efrima and H. Metiu, Classical theory of light scattering by an adsorbed molecule II. Model calculations, J. Chem. Phys. 70:2297 (1979)

    Article  ADS  Google Scholar 

  5. S. Efrima and H. Metiu, Surface induced resonant Raman scattering (SERS), Surf. Sci. 92:417 (1980).

    Article  ADS  Google Scholar 

  6. T. K. Lee and J. L. Birman, Molecule adsorbed on plane metal surface: Coupled system eigenstates, Phys. Rev. B 22:5953 (1980)

    Article  ADS  Google Scholar 

  7. T. K. Lee and J. L. Birman, Quantum theory of enhanced Raman scattering by molecules on metals: Surface-plasmon mechanism for plane metal surface, Phys. Rev. B 22:5961 (1980).

    Article  ADS  Google Scholar 

  8. M. Udagawa, C. C. Chou, J. C. Hemminger and S. Ushioda, Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface, preprint.

    Google Scholar 

  9. J. C. Tsang, J. R. Kirtley and T. N. Theis, Surface plasmon polariton contributions to Stokes emission from molecular monolayers on periodic Ag surfaces, Solid State Commun. 35:667 (1980).

    Article  ADS  Google Scholar 

  10. A. Otto, Surface enhanced Raman scattering (SERS): What do we know?, in Proceedings of 6th Solid Vacuum Interface Conference, Delft, The Netherlands, 1980, to be published.

    Google Scholar 

  11. B. Pettinger, Surface enhanced Raman spectroscopy (SERS) of pyridine on Ag electrodes. Part II: Evidence for overtones, Chem. Phys. Lett. 78:404 (1981).

    Article  ADS  Google Scholar 

  12. J. I. Gersten, R. L. Birke and J. R. Lombardi, Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface, Phys. Rev. Lett. 43:147 (1979).

    Article  ADS  Google Scholar 

  13. H. Ueba, Effective resonant light scattering from adsorbed molecules, J. Chem. Phys. 73:725 (1980).

    Article  ADS  Google Scholar 

  14. H. Ueba and S. Ichimura, Raman scattering of adsorbed molecules, J. Chem. Phys. 74:3070 (1981).

    Article  ADS  Google Scholar 

  15. U. Wenning, B. Pettinger and H. Wetzel, Angular-resolved Raman spectroscopy of pyridine on copper and gold electrodes, Chem. Phys. Lett. 70:49 (1980).

    Article  ADS  Google Scholar 

  16. J. A. Creighton, C. G. Blatchford and M. G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday II 75:790 (1979).

    Article  Google Scholar 

  17. T. M. Wood and M. V. Klein, Studies of the mechanism of enhanced Raman scattering in ultrahigh vacuum, Solid State Commun. 35:263 (1980).

    Article  ADS  Google Scholar 

  18. A. Otto, J. Timper, J. Billmann and I. Pockrand, Enhanced inelastic light scattering from metal electrodes caused by adatoms, Phys. Rev. Lett. 45:46 (1980).

    Article  ADS  Google Scholar 

  19. R. L. Birke, J. R. Lombardi and J. I. Gersten, Observation of a continuum in enhanced Raman scattering from a metal-solution interface, Phys. Rev. Lett. 43:71 (1979).

    Article  ADS  Google Scholar 

  20. E. Burstein, Y.J. Chen, C. Y. Chen, S. Lundquist and E. Tosatti, Giant Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29:567 (1979).

    Article  ADS  Google Scholar 

  21. B. N. J. Persson, Theory of the damping of excited molecules located above a metal surface, J. Phys. C (Solid State Phys.) 11:4251 (1978).

    Article  ADS  Google Scholar 

  22. Furtak and Reyes (Ref. 1) mentioned about the work by R. Fuchs, Enhanced Raman scattering by molecules adsorbed on metals, Bull. Am. Phys. Soc. 24:339 (1979). However, its final form has not yet been available to us.

    Google Scholar 

  23. For example, Ag: N. E. Christensen, The band structure of silver and optical interband transitions, Phys. Status Solidi (b) 54: 551 (1972)

    Article  Google Scholar 

  24. Cu: G. A. Burdick, Energy band structure of copper, Phys. Rev. 129:138 (1963)

    Article  ADS  MATH  Google Scholar 

  25. Au: N. T. E. Christensen and B. O. Seraphin, Relativistic band calculation and the optical properties of gold, Phys. Rev. B 4:3321 (1971).

    Article  ADS  Google Scholar 

  26. H. Yamada and Y. Yamamoto, Surface enhanced Raman spectra of pyridine adsorbed on silver, gold, nickel and platinum metals, Chem. Phys. Lett. 77:520 (1981).

    Article  ADS  Google Scholar 

  27. J. W. Rowe, C. V. Shank, D. A. Zwemer and C. A. Murray, Ultra-high-vacuum studies of enhanced Raman scattering from pyridine on Ag surfaces, Phys. Rev. Lett. 44:1770 (1980).

    Article  ADS  Google Scholar 

  28. P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann and J. A. Bradley, Surface enhanced Raman scattering from pyridine on Ag (111), Phys. Rev. Lett. 45:1519 (1980).

    Article  ADS  Google Scholar 

  29. R. Dornhaus, R. E. Benner and R. K. Chang, Surface plasmon contribution to SERS, Surf. Sci. 101:367 (1980).

    Article  ADS  Google Scholar 

  30. B. Pettinger, U. Wenning and H. Wetzel, Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes, Surf. Sci. 101:409 (1980).

    Article  ADS  Google Scholar 

  31. V. Celli, A. Marvin and F. Toigo, Light scattering from rough surfaces, Phys. Rev. B 11:1779 (1975).

    Article  ADS  Google Scholar 

  32. R. R. Chance, A. Prock and R. Silbey, Molecular fluorescence and energy transfer near interfaces, in Advances in Chemical Physics, Vol. 37, ed. by I. Prigogine and S. A. Rice (John Wiley and Sons, New York, 1978), p. 1.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Ueba, H. (1982). Induced Resonance Model. In: Chang, R.K., Furtak, T.E. (eds) Surface Enhanced Raman Scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9257-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9257-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9259-4

  • Online ISBN: 978-1-4615-9257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics