Skip to main content

The Calculation of Diffusion Coefficients in Semiconductors

  • Chapter
Atomic Diffusion in Semiconductors

Abstract

The intent of the present chapter is to discuss the current status of theoretical work which has been performed in connection with predicting rates of atomic motion in semiconducting materials. This theoretical work, aside from being of intrinsic interest, has some utility for individuals interested in experimental phenomena. Firstly, the calculations provide a means for estimating diffusion properties for systems which have not been studied or for systems for which it is difficult to perform measurements. Secondly, some calculations can often be used as a test of the accuracy of experimental data inasmuch as data for systems which do not conform to calculations based on reasonable models are suspect, and those systems become targets for future work in order to verify or reject the early measurements. As an example, in metal systems theoretical calculations have played a major role confirming the accuracy or inaccuracy of a given set of experimental data. Thirdly, inasmuch as the process of atomic diffusion involves ionic interactions which deviate substantially from equilibrium conditions, experimental data interpreted through various models, in principle, can provide information about the nature of very short-range as well as very long-range forces in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes. (McGraw-Hill, New York, 1941)

    Google Scholar 

  2. R. M. Barrer, Diffusion In and Through Solids, p. 291. (Cambridge University Press, London, 1941)

    Google Scholar 

  3. W. Jost, Diffusion in Solids, Liquids, Gases (Revised), p. 172. (Academic Press, New York, 1960)

    Google Scholar 

  4. C. A. Wert and C. Zener, Phys. Rev., 76, 1169 (1949)

    Article  ADS  Google Scholar 

  5. C. A. Wert, Phys. Rev., 79, 601 (1950)

    Article  ADS  Google Scholar 

  6. C. Zener; W. Shockley (Editor), Imperfections in Nearly Perfect Crystals, p. 289. (Wiley, New York, 1952)

    Google Scholar 

  7. A. D. LeClaire; B. Chalmers (Editor), Progess in Metal Physics, Vol. 4, p. 265. (Pergamon, London, 1953)

    Google Scholar 

  8. D. Lazarus; F. Scitz and D. Turnbull (Editors), Solid State Physics, Vol. 10, p. 81. (Academic Press, New York and London, 1960)

    Google Scholar 

  9. G. Vineyard, J. Phys. Chem. Solids, 3, 121 (1957)

    Article  ADS  Google Scholar 

  10. S. A. Rice, Phys. Rev., 112, 804 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  11. H. R. Glyde, Rev. Mod. Phys., 39, 373 (1967)

    Article  ADS  Google Scholar 

  12. W. Franklin, J. Phys. Chem. Solids, 28, 829 (1967)

    Article  ADS  Google Scholar 

  13. B. I. Boltaks, Diffusion in Semiconductors. (Academic Press, New York, 1963)

    Google Scholar 

  14. H. Letaw, L. Slifkin and W. M. Portnoy, Phys. Rev., 102, 636 (1956)

    Article  ADS  Google Scholar 

  15. H. Widmer and G. R. Gunther-Mohr, Helv. Phys. Acta, 34, 635 (1961)

    Google Scholar 

  16. M. M. Valenta and C. Ramasastry, Phys. Rev., 106, 731 (1957)

    Article  Google Scholar 

  17. A. Seeger and K. P. Chik, Phys. Stat. Sol., 29, 455 (1968)

    Article  ADS  Google Scholar 

  18. R. N. Ghoshtagore, Phys. Rev. Letters, 16, 890 (1966)

    Article  ADS  Google Scholar 

  19. B. J. Masters and J. M. Fairfield, Appl. Phys. Letters, 8, 280 (1966)

    Article  ADS  Google Scholar 

  20. J. M. Fairfield and B. J. Masters, J. appl. Phys., 38, 3148 (1967)

    Article  ADS  Google Scholar 

  21. R. F. Peart, Phys. Stat. Sol., 15, K119 (1966)

    Article  ADS  Google Scholar 

  22. M. W. Valenta and C. Ramasastry, Phys. Rev., 106, 73 (1957)

    Article  ADS  Google Scholar 

  23. G. D. Watkins, J. Phys. Soc. Japan, 18, Supp. II, 22 (1963)

    Article  Google Scholar 

  24. R. A. Logan, Phys. Rev., 101, 1455 (1956)

    Article  ADS  Google Scholar 

  25. R. L. Longini and R. F. Greene, Phys. Rev., 102, 992 (1956)

    Article  ADS  Google Scholar 

  26. A. F. W. Willoughby, J. Mat. Science, 3, 89 (1968)

    Article  ADS  Google Scholar 

  27. F. J. Morin and J. P. Maita, Phys. Rev., 94, 1525 (1954)

    Article  ADS  Google Scholar 

  28. R. A. Swalin, J. Phys. Chem. Solids, 18, 290 (1961)

    Article  ADS  Google Scholar 

  29. J. Waser and L. Pauling, J. Chem. Phys., 18, 747 (1950)

    Article  ADS  Google Scholar 

  30. R. A. Swalin, Acta metall, 7, 736 (1959)

    Article  Google Scholar 

  31. S. Mayburg, Phys. Rev., 95, 38 (1954)

    Article  ADS  Google Scholar 

  32. S. Ishino, F. Nakazawa and R. R. Hasiguti, J. Phys. Soc. Japan, 20, 817 (1965)

    Article  ADS  Google Scholar 

  33. A. D. Belyaev, L. I. Datsenko and S. S. Malogolevets, Ukr. Fix. Zh., 13, 654 (1967)

    Google Scholar 

  34. A. Hiraki and T. Suita, J. Phys. Soc. Japan, 18, Supp. III, 254 (1962)

    Google Scholar 

  35. G. Bemski and W. M. Augustyniak, Phys. Rev., 108, 645 (1957)

    Article  ADS  Google Scholar 

  36. A. Scholz, Phys. Stat. Sol., 3, 42 (1963)

    Article  ADS  Google Scholar 

  37. A. Seeger and A. Scholz, Phys. Stat. Sol., 3, 1480 (1963)

    Article  ADS  Google Scholar 

  38. Reported in reference 17

    Google Scholar 

  39. G. Schmid, K. P. Chik and A. Seeger; L. Vook (Editor), Radiation Effects in Semiconductors, p. 60. (Plenum Press, New York, 1968)

    Google Scholar 

  40. K. H. Bennemann, Phys. Rev., 137, A1497 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  41. K. H. Bennemann, Phys. Rev., 133, A1045 (1964)

    Article  ADS  Google Scholar 

  42. W. A. Harrison, Pseudopotentials in the Theory of Metals. (Benjamin, New York and Amsterdam, 1966)

    Google Scholar 

  43. A. Scholz and A. Seeger; P. Baruch (Editor), Radiation Damage in Semiconductors, p. 315. (Dunod, Paris, 1965)

    Google Scholar 

  44. R. A. Swalin, J. Phys. Chem. Solids, 23, 153 (1962)

    Article  ADS  Google Scholar 

  45. K. Weiser, Phys. Rev., 126, 1427 (1962)

    Article  ADS  Google Scholar 

  46. R. R. Hasiguti, Calculation of the Properties of Vacancies and Interstitials, p. 27. (U.S. Government Printing Office, Washington, D.C., 1966)

    Google Scholar 

  47. G. D. Watkins, Symposium in Radiation Damage in Semiconductor Components, as reported in reference 17. (Conference in Toulouse, 1967)

    Google Scholar 

  48. R. A. Swalin, J. appl. Phys., 29, 670 (1958)

    Article  ADS  Google Scholar 

  49. J. Friedel, Adv. in Phys., 3, 446 (1954)

    Article  ADS  Google Scholar 

  50. B. J. Masters and J. M. Fairfield, J. appl. Phys., 40, 2390 (1969)

    Article  ADS  Google Scholar 

  51. M. F. Millea, J. Phys. Chem. Solids, 27, 315 (1966)

    Article  ADS  Google Scholar 

  52. L. Pauling, The Nature of the Chemical Bond (2nd ed.). (Cornell Press, Ithaca, 1940)

    Google Scholar 

  53. N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 (1938)

    Article  Google Scholar 

  54. E. S. Rittner, R. A. Hutner and F. K. Dupre, J. Chem. Phys., 17, 1981 (1949)

    Article  Google Scholar 

  55. J. F. Laurent and J. Benard, J. Phys. Chem. Solids, 3, 7 (1957)

    Article  ADS  Google Scholar 

  56. J. F. Laurent and J. Benard, J. Phys. Chem. Solids, 7, 218 (1958)

    Article  ADS  Google Scholar 

  57. R. A. Swalin, Thermodynamics, Vol. II, p. 197. (International Atomic Energy Agency, Vienna, 1966)

    Google Scholar 

  58. M. P. Tosi, Calculations of the Properties of Vacancies and Interstitials, p. 1. (Nat’l. Bureau of Standards, Misc. Pub. 287, 1966)

    Google Scholar 

  59. I. M. Boswarva and A. B. Lidiard, Calculations of the Properties of Vacancies and Interstitials, p. 7. (Nat’l. Bureau of Standards, Misc. Pub. 287, 1966)

    Google Scholar 

  60. A. B. Lidiard, Calculations of the Properties of Vacancies and Interstitials, p. 61. (Nat’l. Bureau of Standards, Misc. Pub. 287, 1966)

    Google Scholar 

  61. I. M. Boswarva and A. D. Franklin, Mass Transport in Oxides, p. 15. (Nat’l. Bureau of Standards Special Pub. 296, 1968)

    Google Scholar 

  62. R. Guccione, M. P. Tosi and M. Asdente, J. Phys. Chem. Solids, 10, 162 (1959)

    Article  ADS  Google Scholar 

  63. F. Bailly; R. Hasiguti (Editor), Lattice Defects in Semiconductors, p. 231. (University of Tokyo and Pennsylvania State University, Tokyo University, College Park and London, 1968)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Publishing Company Ltd

About this chapter

Cite this chapter

Swalin, R.A. (1973). The Calculation of Diffusion Coefficients in Semiconductors. In: Shaw, D. (eds) Atomic Diffusion in Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8636-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8636-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8638-8

  • Online ISBN: 978-1-4615-8636-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics