Skip to main content

Patch-Clamped Liposomes

Recording Reconstituted Ion Channels

  • Chapter
Single-Channel Recording

Abstract

Ion-channel reconstitution and patch recording offer different but complementary experimental methods. Both can be used to help provide a molecular understanding of how ion transport activity is controlled by protein structure and regulation. On the one hand, through use of reconstitution techniques, an ion channel can be isolated, purified, and/or chemically modified and reinserted into a lipid bilayer. The result is a well-characterized membrane system in which biochemical properties likely to be important in regulating transport—subunit stoichiometry, phosphorylation, methylation, lipid composition, etc.—can be monitored and controlled. On the other hand, patch recording techniques can provide the necessary sensitivity in ion transport measurements for discrimination of changes in single channel activity that are effected by structural and regulatory alterations, and the measurements can be done in an experimental geometry that allows controlled access to the membrane of bath-soluble chemical messengers and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 78:3586–3590.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J. P., Heidmann, T., Popot, J. L., and Sobel, A., 1979, Reconstitution of a functional acetylcholine regulator under defined conditions, FEBS Lett. 105:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Cuppoletti, J., Mayhew, E., Zobel, C. R., and Jung, C. Y., 1981, Erythrosomes: Large proteoliposomes derived from crosslinked human erythrocyte cytoskeletons and exogenous lipid, Proc. Natl. Acad. Sci. U.S.A. 78:2786–2790.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches, Pflügers Arch. 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, S. H., and Mescher, M. F., 1981, Secondary cytolytic T lymphocyte stimulation by purified H-2K in liposomes, Proc. Natl. Acad. Sci. U.S.A. 78:2488–2492.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R., and Patlak, J., 1980, Single channel currents from excised patches of muscle membrane, Proc. Natl. Acad. Sci. U.S.A. 77:6930–6934.

    Article  PubMed  CAS  Google Scholar 

  • Hub, H. H., Zimmermann, U., and Ringsdorf, H., 1982, Preparation of large unilamellar vesicles, FEBS Lett. 140:254–256.

    Article  Google Scholar 

  • Huganir, R. L., and Racker, E., 1982, Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica, J. Biol. Chem. 257:9372–9378.

    CAS  Google Scholar 

  • Huganir, R. L., Schell, M. A., and Racker, E., 1979, Reconstitution of the purified acetylcholine receptor from Torpedo californica, FEBS Lett. 108:155–160.

    Article  CAS  Google Scholar 

  • Kagawa, Y., and Racker, E., 1971, Partial resolution of enzymes catalyzing oxidative phosphorylation. 25.

    Google Scholar 

  • Reconstitution of vesicles catalyzing 32Pi-adenosine-triphosphate exchange, J. Biol. Chem. 246:5477–5487.

    Google Scholar 

  • Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252:7384–7390.

    PubMed  CAS  Google Scholar 

  • Krishtal, O. A., and Pidoplichko, V. I., 1980, A receptor for protons in the nerve cell membrane, Neuroscience 5:2325–2327.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M., 1980, Purification of acetylcholine receptors, reconstitution into lipid bilayers, and study of agonist-induced cation channel regulation,J. Biol. Chem. 255:8340–8350.

    PubMed  CAS  Google Scholar 

  • Miller, C., 1982, Open-state substructure of single chloride channels from Torpedo electroplax, Phil. Trans. Roy. Soc. Lond. B 299:401–411.

    Article  CAS  Google Scholar 

  • Miller, C., 1982, Reconstitution of ion channels in planar bilayer membranes: A five year progress report, Comm. Mol. Cell Biophys. 1:413–428.

    Google Scholar 

  • Miller, C., and Racker, E., 1979, Reconstitution of membrane transport functions, in: The Receptors: A Comprehensive Treatise, Vol. 1 (R. D. O’Brien, ed.), pp. 1–31, Plenum Press, New York.

    Google Scholar 

  • Miller, C., and White, M. M., 1980, A voltage-dependent chloride conductance from Torpedo electroplax membrane, Ann. N.Y. Acad. Sci. 341:534–551.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, N., Anholt, R., Lindstrom, J., and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.

    Article  PubMed  CAS  Google Scholar 

  • Neubig, R. R., Boyd, N. D., and Cohen, J. B., 1982, Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization, Biochemistry 21:3460–3467.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Jacobson, K., and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta 394:483–491.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U., 1981, Liposomes with large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212:186–194.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, J. P., and Dowben, R. M., 1969, Formation and properties of thin-walled phospholipid vesicles,J. Cell. Physiol. 73:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Sakmann, B., Patlak, J., and Neher, E., 1980, Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist, Nature 286:71–73.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F., and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Annu. Rev. Biophys. Bioeng. 9:467–508.

    Article  PubMed  CAS  Google Scholar 

  • Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. A., 1982, Reconstitution of a functional mammalian sodium channel from partially purified components, Soc. Neurosci. Abstr. 8:727.

    Google Scholar 

  • Tank, D. W., Miller, C., and Webb, W. W., 1982, Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax, Proc. Natl. Acad. Sci. U.S.A. 79:7749–7753.

    Article  PubMed  CAS  Google Scholar 

  • Vail, W. J., and Stollery, J. G., 1979, Phase changes of cardiolipin vesicles mediated by different cations, Biochim. Biophys. Acta 551:74–84.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J. W., McNamee, M. G., Pasquale, E., Cash, D. J., and Hess, G. P., 1981, Acetylcholine receptor inactivation in Torpedo californica electroplax membrane vesicles. Detection of two processes in the millisecond and second time regions, Biochem. Biophys. Res. Commun. 100:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. U.S.A. 79:3651–3655.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W. C. S., and Raftery, M. A., 1979, Carbamylcholine-induced rapid cation efflux from reconstituted vesicles containing purified acetylcholine receptor, Biochem. Biophys. Res. Commun. 89:26–35.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Ca++-activated nonselective cation channels in neuroblastoma, Nature 296:357–359.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, U., and Scheurich, P., 1981, Fusion of Avena sativa mesophyll cell protoplasts by electrical breakdown, Biochim. Biophys. Acta 641:160–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Tank, D.W., Miller, C. (1983). Patch-Clamped Liposomes. In: Sakmann, B., Neher, E. (eds) Single-Channel Recording. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7858-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7858-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7860-4

  • Online ISBN: 978-1-4615-7858-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics