Skip to main content

Functional Activities and Functional Sites of the Ribosome

  • Chapter
Ribosomes

Part of the book series: Cellular Organelles ((CORG))

Abstract

At any given time in the course of polypeptide elongation, the ribosome is attached to the coding region of mRNA and retains the molecule of the peptidyl-tRNA (Fig. 9.1). The peptidyl-tRNA is a nascent peptide chain bound through its C-terminus to the tRNA that has donated the last amino acid residue to the peptide. Such a ribosome can bind or may become capable of binding the aminoacyl-tRNA determined by the next mRNA codon (Fig. 9.1 step I). The binding of the aminoacyl-tRNA results in the retained peptidyl-tRNA and the newly bound aminoacyl-tRNA being present on the ribosome simultaneously. Their side-by-side location and the catalytic activity of the ribosome are prerequisites of the transpeptidation reaction: the C-terminus of the peptidyl residue is transferred from the tRNA (to which it had previously been bound) to the amino group of the aminoacyl-tRNA (Fig. 9.1 step II). As a result, the formation of a new peptidyl-tRNA with the peptide elongated by one amino acid residue at the C-end takes place; the other product of the transpeptidation reaction is the deacylated tRNA. In order to make the ribosome competent to bind the next aminoacyl-tRNA, the intraribosomal ligands (tRNAs and mRNA) must be displaced, resulting in the vacation of a place for the aminoacyl-tRNA and in the positioning of the next mRNA codon (Fig. 9.1 step III); this step is called translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal, R. K., Penczek, P., Grassucci, R. A., Li, Y., Leith, A., Nierhaus, K. H., and Franck, J. (1996) Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome, Science 271:1000–1002.

    Article  PubMed  CAS  Google Scholar 

  • Barta, A., Kuechler, E., and Steiner, G. (1990) Photoaffinity labeling of the peptidyltransferase region, in The Ribosome: Structure, Function, and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 358–365, ASM Press, Washington, DC.

    Google Scholar 

  • Bretscher, M. S. (1968) Translocation in protein synthesis: A hybrid structure model, Nature 218:675–677.

    Article  PubMed  CAS  Google Scholar 

  • Brimacombe, R., Greuer, B., Mitchell, P., Osswald, M., Rinke-Appel, J., Schueler, D., and Stade, K. (1990) Three-dimensional structure and function of Escherichia coli 16S and 23S rRNA as studied by cross-linking techniques, in The Ribosome: Structure, Function, and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 93–106. ASM Press, Washington, DC.

    Google Scholar 

  • Chinali, G., Wolf, H., and Parmeggiani, A. (1977) Effect of kirromycin on elongation factor Tu: Location of the catalytic center for ribosome · elongation-factor-Tu GTPase activity on the elongation factor, Eur. J. Biochem. 75:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Cooperman, B. S., Weitzmann, C. J., and Fernandez, C. L. (1990) Antibiotic probes of Escherichia coli ribosomal peptidyltransferase, in The Ribosome: Structure, Function, and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 491–501, ASM Press, Washington, DC.

    Google Scholar 

  • Cundliffe, E. (1990) Recognition sites for antibiotics within rRNA, in The Ribosome: Structure, Function, and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 479–490, ASM Press, Washington, DC.

    Google Scholar 

  • Girshovich, A. S., Bochkareva, E. S., and Ovchinnikov, Y. A. (1981) Elongation factor G and protein S12 are the nearest neighbors in the Escherichia coli ribosome, J. Mol. Biol. 151:229–243.

    Article  PubMed  CAS  Google Scholar 

  • Gudkov, A. T., Gongadze, G. M., Buchuev, V. N., and Okon, M. S. (1982) Proton magnetic resonance study of the ribosomal protein L7/L12 in situ, FEBS Letters 138:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Hamel, E., Koka, M., and Nakamoto, T. (1972) Requirement of an E. coli 50S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate, J. Biol. Chem. 247:805–814.

    PubMed  CAS  Google Scholar 

  • Highland, J. J., Bodley, J. W., Gordon, J., Hasenbank, R., and Stoeffler, G. (1973) Identity of the ribosomal proteins involved in the interaction with elongation factor G, Proc. Natl. Acad. Sci. USA 70:142–150.

    Article  Google Scholar 

  • Huettenhofer, A., and Noller, H. F. (1994) Footprinting mRNA-ribosome complexes with chemical probes, EMBO J. 13:3892–3901.

    CAS  Google Scholar 

  • Lipmann, F. (1969) Polypeptide chain elongation in protein biosynthesis, Science 164:1024–1031.

    Article  PubMed  CAS  Google Scholar 

  • Monro, R. E. (1967) Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli, J. Mol. Biol. 26:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, D. (1964) Puromycin inhibition of protein synthesis: Incorporation of puromycin into peptide chains, Proc. Natl. Acad. Sci. USA 51:585–592.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H. F. (1998) Ribosomal RNA, in RNA Structure and Function, pp. 253–278, CSHL Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Noller, H. F., Moazed, D., Stern, S., Powers, T., Allen, P. N., Robertson, J. M., Weiser, B., and Triman, K. (1990) Structure of rRNA and its functional interactions in translation, in The Ribosome: Structure, Function and Evolution (W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 73–92, ASM Press, Washington, DC.

    Google Scholar 

  • Noller, H. F. (1991) Ribosomal RNA and translation. Annu. Rev. Biochem. 60:191–227.

    Article  PubMed  CAS  Google Scholar 

  • Powers, T., and Noller, H. F. (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA, RNA 1:194–209.

    PubMed  CAS  Google Scholar 

  • Prince J. B., Taylor, B. H., Thurlow, D. L., Offengand, J., and Zimmermann, R. A. (1982) Covalent cross-linking of tRNA1 Val to 16S RNA at the ribosomal P site: Identification of cross-linked residues, Proc. Natl. Acad. Sci. USA 79:5450–5454.

    Article  PubMed  CAS  Google Scholar 

  • Oefverstedt, L.-G., Zhang, K., Tapio, S., Skoglund, U., and Isaksson, L. A. (1994) Starvation in vivo for aminoacyl-tRNA increases the spatial separation between the two ribosomal subunits, Cell 79:629–638.

    Article  CAS  Google Scholar 

  • Rich, A. (1974) How transfer RNA may move inside the ribosome, in Ribosomes (M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 871–884, CSHL Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Samaha, R. R., Green, R., and Noller, H. F. (1995) A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome, Nature 377:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Sergiev P.V., Lavrik, I.N., Wlasoff, V.A., Dokudovskaya, S.S., Dontsova, O.A., Bogdanov, A.A., and Brimacombe, R. (1997) The path of mRNA through the bacterial ribosome: A site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine, RNA 3:464–475.

    PubMed  CAS  Google Scholar 

  • Spirin, A. S. (1969) A model of the functioning ribosome: Locking and unlocking of the ribosome sub-particles, Cold Spring Harbor Symp. Quant Biol. 34:197–207.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, A. S. (1983) Location of tRNA on the ribosome, FEBS Letter 156:217–221.

    Article  CAS  Google Scholar 

  • Spirin, A. S., Baranov, V. I., Polubesov, G. S., and Serdyuk, I. N. (1987) Translocation makes the ribosome less compact, J. Mol. Biol. 194:119–128.

    Article  PubMed  CAS  Google Scholar 

  • Stark, H., Orlova, E. V., Rinke-Appel, J., Juenke, N., Mueller, F., Rodnina, M., Wintermeyer, W, Brimacombe, R., and van Heel, M. (1997) Arrangement of tRNAs in pre-and posttranslocational ribosomes revealed by electron cryomicroscopy, Cell 88:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, J. A. (1969) Nucleotide sequences of the ribosomal binding sites of bacteriophage R17 RNA, Cold Spring Harbor Symp. Quant. Biol. 34:621–630.

    Article  PubMed  CAS  Google Scholar 

  • Stoeffler, G., and Stoeffler-Meilicke, M. (1984) Immunoelectron microscopy of ribosomes, Annu. Rev. Biophys. Bioeng. 13:303–330.

    Article  CAS  Google Scholar 

  • Sundaralingam, M., Brennan, T, Yathindra, N., and Ichikawa, T. (1975) Stereochemistry of messenger RNA (codon)-transfer RNA (anticodon) interaction on the ribosome during peptide bond formation, in Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (M. Sundaralingam and S. T. Rao, eds.), pp. 101–115, University Park Press, Baltimore.

    Google Scholar 

  • Takanami, M. and Okamoto, T. (1963) Interaction of ribosomes and synthetic polyribonucleotides, J. Mol. Biol. 7:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Takanami, M. and Zubay, G. (1964) An estimate of the size of the ribosomal site for messenger RNA binding, Proc. Natl. Acad. Sci. USA 51:834–839.

    Article  PubMed  CAS  Google Scholar 

  • Traut, R. R., and Monro, R. E. (1964) The puromycin reaction and its relation to protein synthesis, J. Mol. Biol. 10:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J. D. (1964) The synthesis of proteins upon ribosomes, Bull. Soc. Chim. Biol. 46:1399–1425.

    PubMed  CAS  Google Scholar 

  • Wilson, K. S., and Noller, H. F. (1998) Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing, Cell 92:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Wower, J., Hixson, S. S., and Zimmermann, R. A. (1989) Labeling the peptidyl transferase center of the Escherichia coli ribosome with photoreactive tRNAPhe derivatives containing azidoadenosine at the 3′ end of the acceptor arm: a model of the tRNA-ribosome complex, Proc. Natl. Acad. Sci. USA 36:5232–5236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Spirin, A.S. (1999). Functional Activities and Functional Sites of the Ribosome. In: Ribosomes. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7817-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7817-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46146-0

  • Online ISBN: 978-1-4615-7817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics