Skip to main content

Mechanisms and Dynamics of Solvent Relaxation

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

In Chapter 7 we discussed the mechanisms by which solvents interact with fluorophores, and the effects of these interactions on emission spectra. These emission spectra can be shifted to lower energy either as a result of the general solvent effects, or by specific effects based on chemical interactions between the fluorophore and the solvent. Throughout this discussion we assumed that the fluorophore was in a fluid solvent, and that the relaxation time of the solvent (τ s ) was much smaller than the fluorescence lifetime (τ). As a result, emission occurred from the relaxed state where the solvent was in equilibrium with the new electron distribution of the excited fluorophore. The reorganization of the solvent around the excited state dipole is an excited state reaction. In Chapter 12 we will describe the effects of a simple two-state reaction on the spectral properties of fluorophores. In this instance, the time-resolved decays of fluorescence, and the phase-modulation data, display a number of general and useful characteristics. Once understood, these characteristics can be used to prove that an excited state reaction is occurring, and to derive the kinetic constants for the system. The two-state model is relatively simple in that there are only two emitting species, and the lifetimes of these species are independent of emission wavelength. In many respects, the two-state model provides a useful conceptual framework within which to consider any excited state process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hercules, D. M., and Rodgers, L. B., 1960, Luminescence spectra of naphthols and naphthalenediols: Low-temperature phenomena, J. Phys. Chem. 64:397–400.

    Article  CAS  Google Scholar 

  2. Pilulik, L. G., and Solomakho, M. A., 1960, On the influence of temperature on the electronic spectra of complex molecules,Opt. Spectrosc. 8:176–178.

    Google Scholar 

  3. Gladchenko, L. F., and Pikulik, L. G., 1967, Dipole moment of the excited state of indole and tryptophan, J. Appl. Spectrosc. 6:239–241.

    Article  Google Scholar 

  4. Lakowicz, J. R., 1980, Fluorescence spectroscopic investigations of the dynamic properties of proteins, membranes and nucleic acids, J. Biochem. Biophys. Methods 2:91–119.

    Article  CAS  Google Scholar 

  5. Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, Methods Enzymol. 61:378–425.

    Article  CAS  Google Scholar 

  6. Lakowicz, J. R., and Baiter, A., 1982, Direct recording of the initially-excited and the solvent-relaxed fluorescence emission of a tryptophan derivative in viscous solution by phase sensitive detection of fluorescence, Photochem. Photobiol. 36:125–132.

    Article  CAS  Google Scholar 

  7. Walker, M. S., Bednar, T. W., and Lumry, R., 1966, Exciplex formation in the excited state of indole, J. Chem. Phys. 45:3455–3456.

    Article  CAS  Google Scholar 

  8. Sun, M., and Song, P. S., 1977, Solvent effects on the fluorescent states of indolederivatives-Dipole-moments. Photochem. Photobiol. 25:3–9.

    Article  CAS  Google Scholar 

  9. Cherkasov, A. S., and Dragneva, G. I., 1961, Influence of solvent viscosity on the fluorescence spectra of certain organic compounds, Opt. Spectros. 10:283–241.

    Google Scholar 

  10. Piterskaya, I. V., and Bakhshiev, N. G., 1963, Quantitative investigation of the temperature dependence of the absorption and fluorescence spectra of complex molecules, Bull. Acad. Sci. USSR, Phys. Ser., 27:625–629.

    Google Scholar 

  11. Bakhshiev, N. G., and Piterskaya, I. V., 1965, Universal molecular interactions and their effect on the electronic spectra of molecules in two-component solutions X, Opt. Spectrosc. 19:390–395.

    Google Scholar 

  12. Macgregor, R. B., and Weber, G., 1981, Fluorophores in polar media. Spectral effects of the Langevin distribution of electrostatic interactions, Proc. N.Y. Acad. Sci. 366:140–154.

    Article  CAS  Google Scholar 

  13. Lakowicz, J. R., and Cherek, H., 1980, Unpublished observations.

    Google Scholar 

  14. Bakhshiev, N. G., Mazurenko, Yu. T., and Piterskaya, I. V., 1966, Luminescence decay in different portions of the luminescence spectrum of molecules in viscous solution, Opt. Spectrosc. 21:307–309.

    Google Scholar 

  15. Mazurenko, Yu. T., and Bakhshiev, N. K., 1970, Effect of orientation dipole relaxation on spectral, time, and polarization characteristics of the luminescence of solutions, Opt. Spectrosc. 28:490–494.

    Google Scholar 

  16. Bakhshiev, N. K., Mazurenko, Yu. T., and Piterskaya, I. V., 1969, Relaxation effects in the luminescence characteristics of viscous solutions, Akad. Nauk USSR, Bull. Phys. Sci. 32:1262–1266.

    Google Scholar 

  17. DeToma, R. P., Easter, J. H., and Brand, L., 1976, Dynamic interactions of fluorescence probes with the solvent environment, J. Amer. Chem. Soc. 98:5001–5007.

    Article  Google Scholar 

  18. Veselova, T. V., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide, Opt. Spectrosc. 19:39–43.

    Google Scholar 

  19. Rapp, W., Klingenberg, H. H., and Lessing, H. E., 1971, A kinetic model for fluorescence solvatochromism, Ber. Bunsen-Ges. 75:883–886.

    CAS  Google Scholar 

  20. Lakowicz, J. R., Cherek, H., and Baiter, A., 1981, Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry, J. Biochem. Biophys. Methods 5:131–146.

    Article  CAS  Google Scholar 

  21. Cherkasov, A. S., 1962, The role of donor-acceptor interactions in the influence of the solvent on fluorescence spectra of some anthracene and phthalimide derivatives, Opt. Spectrosc. 12:35–39.

    Google Scholar 

  22. Ware, W. R., Lee, S. K., Brant, G. J., and Chow, P. P., 1970, Nanosecond time-resolved emission spectroscopy: Spectral shifts due to solvent-excited solute relaxation. J. Chem. Phys. 54:4729–4737.

    Article  Google Scholar 

  23. Bakhshiev, N. G., 1964, Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions VII. Theory (general case of an isotropic solution), Opt. Spectrosc. 16:446–451.

    Google Scholar 

  24. Mazurenko, Yu. T., 1973, Temperature dependence of luminescence spectra of viscous solutions, Opt. Spectrosc. 34:527–529.

    Google Scholar 

  25. Mazurenko, Yu. T., and Udalsov, V. S., 1978, Spectral relaxation of fluorescence 1. Kinetics of the spectra associated with the orientational relaxation of the solvent, Opt. Spectrosc. 44:417–420.

    Google Scholar 

  26. Gard, S. K., and Smyth, C. P., 1965, Microwave absorption and molecular structure in liquids LXII. The three dielectric dispersion regions of the normal primary alcohols, J. Phys. Chem. 69:1294–1301.

    Article  Google Scholar 

  27. DeToma, R. P., and Brand, L., 1977, Excited state solvation dynamics of 2-anilinonaphthalene,Chem. Phys. Lett. 47:231–236.

    Article  Google Scholar 

  28. Badea, M. G., DeToma, R. P., and Brand, L., 1978, Nanosecond relaxation processes in liposomes, Biophys. J. 24:197–212.

    Article  CAS  Google Scholar 

  29. Weber, G., and Lakowicz, J. R., 1973, Subnanosecond solvent relaxation studies by oxygen quenching of fluorescence,Chem. Phys. Lett. 22:419–423.

    Article  CAS  Google Scholar 

  30. Rotkiewicz, K., Grabowski, Z. R., and Jasny, J., 1975, Picosecond isomerization kinetics of excited p-dimethylaminobenzonitriles studied by oxygen quenching of fluorescence, Chem. Phys. Lett. 34:55–59.

    Article  CAS  Google Scholar 

  31. Laws, W. R., and Brand, L., 1979, Analysis of two-state excited state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83:795–802.

    Article  CAS  Google Scholar 

  32. Easter, J. H., De Toma, R. P., and Brand, L., 1976, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-a-egg lecithin vesicles, Biophys. J. 16:571–583.

    Article  CAS  Google Scholar 

  33. Lakowicz, J. R., Cherek, H., and Bevan, D. R., 1980, Demonstration of nanosecond dipolar relaxation in biopolymers by inversion of apparent fluorescence phase shift and demodulation lifetimes, J. Biol. Chem. 255:4403–4408.

    CAS  Google Scholar 

  34. Lakowicz, J. R., and Hogen, D., 1981, Dynamic properties of the lipid-water interface of model membranes as revealed by lifetime-resolved fluorescence emission spectra, Biochemistry 20:1366–1373.

    Article  CAS  Google Scholar 

  35. Brand, L., and Gohlke, J. R., 1971, Nanosecond time-resolved fluorescence spectra of a protein-dye complex, J. Biol. Chem. 246:2317–2324.

    CAS  Google Scholar 

  36. Gafni, A., DeToma, R. P., Manrow, R. E., and Brand, L., 1977, Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. Biophys. J. 17:155–168.

    Article  CAS  Google Scholar 

  37. Stryer, L., 1965, The interactions of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of nonpolar binding sites, J. Mol. Biol. 13:482–495.

    Article  CAS  Google Scholar 

  38. Lakowicz, J. R., and Cherek, H., 1981, Proof of nanosecond timescale relaxation in apomyoglobin by phase fluorometry, Biochem. Biophys. Res. Commun. 99:1173–1178.

    Article  CAS  Google Scholar 

  39. Klochkov, V. P., and Korotkov, S. M., 1970, Temperature dependence of the structural absorption and fluorescence spectra of the solutions of aromatic compounds. Opt. Spectrosc. 16:452–456.

    Google Scholar 

  40. Lakowicz, J. R., and Baiter, A., 1982, Theory of phase-modulation fluorometry for excited state processes, Biophys. Chem. 16:99–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1983). Mechanisms and Dynamics of Solvent Relaxation. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7658-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7658-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7660-0

  • Online ISBN: 978-1-4615-7658-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics