Skip to main content

Abstract

Upon excitation with polarized light the emission from fluorescent samples is also polarized. This polarization is a result of the photoselection of fluorophores according to their orientation relative to the direction of the polarized excitation. The emission can be depolarized by a number of phenomena, the relative importance of which depends upon the sample under investigation. Rotational diffusion of fluorophores is one common cause of depolarization. The polarization or anisotropy measurements reveal the average angular displacement of the fluorophore which occurs between absorption and subsequent emission of a photon. This angular displacement is dependent upon the rate and extent of rotational diffusion during the lifetime of the excited state. These diffusive motions in turn depend upon the viscosity of the solvent and the size and shape of the diffusing species. For example, for a fluorophore dissolved in a solvent, the rotational rate of the fluorophore is dependent upon the viscous drag imposed on the fluorophore by the solvent. As a result, a change in solvent viscosity will result in a change in fluorescence anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jablonski, A., 1960, On the notion of emission anisotropy, Bull. Acad. Pol. Sci. 8:259–264.

    CAS  Google Scholar 

  2. Weber, G., 1952, Polarization of the fluorescence of macromolecules I. Theory and experimental method, Biochem. J. 51:145–155.

    CAS  Google Scholar 

  3. Weber, G., 1966, “Polarization of the fluorescence of solutions,” in Fluorescence and Phosphorescence Analysis, D. M. Hercules (Ed.), John Wiley and Sons, New York, pp. 217–240.

    Google Scholar 

  4. Shinitzky, M., Dianoux, A. C., Gitler, C., and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescence probes I. Synthetic micelles, Biochemistry 10:2106–2113.

    Article  CAS  Google Scholar 

  5. Valeur, B., and Weber, G., 1977, Resolution of the fluorescence excitation spectrum of indole into the 1 L a and 1 L b excitation bands, Photochem. Photobiol. 25:441–444.

    Article  CAS  Google Scholar 

  6. Teale, F. W. J., 1969, Fluorescence depolarization by light scattering in turbid solutions, Photochem. Photobiol. 10:363–374.

    Article  CAS  Google Scholar 

  7. Lentz, B. R., 1979, Light scattering effects in the measurement of membrane microviscosity with diphenylhexatriene, Biophys. J. 25:489–494.

    Article  CAS  Google Scholar 

  8. Weber, G., 1953, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8:415–459.

    Article  CAS  Google Scholar 

  9. Weber, G., 1960, Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds, Biochem. J. 75:335–345.

    CAS  Google Scholar 

  10. Weber, G., 1972, Use of fluorescence in biophysics: Some recent developments, Ann. Rev. Biophys. Bioeng. 1:553–570.

    Article  CAS  Google Scholar 

  11. Weber, G., 1971, Theory of fluorescence depolarization by anisotropic Brownian rotations. Discontinuous distribution approach, J. Chem. Phys. 55:2399–2407.

    Article  CAS  Google Scholar 

  12. Cogen, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521–528.

    Article  Google Scholar 

  13. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249:2652–2657.

    CAS  Google Scholar 

  14. Hare, F., and Lussan, G., 1977, Variations in microviscosity values induced by different rotational behavior of fluorescent probes in some aliphatic solvents, Biochim. Biopys. Acta. 467:262–272.

    Article  CAS  Google Scholar 

  15. Lentz, B., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers I. Single component phosphatidylcholine liposomes,Biochemistry 15:4521–4528.

    Article  CAS  Google Scholar 

  16. Weber, G., 1952, Polarization of the fluorescence of macromolecules II. Fluorescence conjugates of ovalbumin and bovine serum albumin, Biochem. J. 51:155–167.

    CAS  Google Scholar 

  17. Yguerabide, J., Epstein, H., and Stryer, L., 1970, Segmental flexibility of an antibody molecule, J. Moi Biol. 51:573–590.

    Article  CAS  Google Scholar 

  18. Weltman, J. K., and Edelman, G. M., 1967, Fluorescence polarization of human Gimmunoglobulin, Biochemistry 6:1437–1447.

    Article  CAS  Google Scholar 

  19. Lakowicz, J. R., and Weber, G., 1980, Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropics,Biophys. J. 32:591–601.

    Article  CAS  Google Scholar 

  20. Lakowicz, J. R., Maliwal, B., Cherek, H., and Baiter, A., 1983, Rotational freedom of tryptophan residues in proteins and peptides quantified by lifetime-resolved anisotropics, Biochemistry (in press).

    Google Scholar 

  21. Levison, S. A., 1975, “Fluorescence polarization kinetic studies of macromolecular reactions,” in Biochemical Fluorescence Concepts, Vol. 1, R. F. Chen and H. Edelhoch (Eds.), Marcel Dekker, New York, pp. 375–408.

    Google Scholar 

  22. Rawitch, A. B., and Weber, G., 1972, The reversible association of lysozyme and thyroglobulin, J. Biol. Chem. 10:680–685.

    Google Scholar 

  23. Visser, A. J. W. G., and Lee, J., 1980, Lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum. A fluorescence study of the protein-ligand equilibrium, Biochemistry 19, 4366–4372.

    Article  CAS  Google Scholar 

  24. Ellerton, N. R., and Isenberg, I., 1969, Fluorescence polarization study of DNA-proflavin complexes, Biopolymers 8:767–786.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1983). Fluorescence Polarization. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7658-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7658-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7660-0

  • Online ISBN: 978-1-4615-7658-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics